首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Complexity of solutions of equations over sets of natural numbers
  • 本地全文:下载
  • 作者:Alexander Okhotin ; Artur Jez
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2008
  • 卷号:1
  • 页码:373-384
  • DOI:10.4230/LIPIcs.STACS.2008.1319
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Systems of equations over sets of natural numbers (or, equivalently, language equations over a one-letter alphabet) of the form $X_i=varphi_i(X_1, ldots, X_n)$ ($1 leqslant i leqslant n$) are considered. Expressions $varphi_i$ may contain the operations of union, intersection and pairwise sum $A plus B = {x + y mid x in A, y in B$. A system with an EXPTIME-complete least solution is constructed, and it is established that least solutions of all such systems are in EXPTIME. The general membership problem for these equations is proved to be EXPTIME-complete.
国家哲学社会科学文献中心版权所有