首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Trimmed Moebius Inversion and Graphs of Bounded Degree
  • 本地全文:下载
  • 作者:Andreas Bj{\"o}rklund ; Thore Husfeldt ; Petteri Kaski
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2008
  • 卷号:1
  • 页码:85-96
  • DOI:10.4230/LIPIcs.STACS.2008.1336
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study ways to expedite Yates's algorithm for computing the zeta and Moebius transforms of a function defined on the subset lattice. We develop a trimmed variant of Moebius inversion that proceeds point by point, finishing the calculation at a subset before considering its supersets. For an $n$-element universe $U$ and a family $scr F$ of its subsets, trimmed Moebius inversion allows us to compute the number of packings, coverings, and partitions of $U$ with $k$ sets from $scr F$ in time within a polynomial factor (in $n$) of the number of supersets of the members of $scr F$. Relying on an intersection theorem of Chung et al. (1986) to bound the sizes of set families, we apply these ideas to well-studied combinatorial optimisation problems on graphs of maximum degree $Delta$. In particular, we show how to compute the Domatic Number in time within a polynomial factor of $(2^{Delta+1-2)^{n/(Delta+1)$ and the Chromatic Number in time within a polynomial factor of $(2^{Delta+1-Delta-1)^{n/(Delta+1)$. For any constant $Delta$, these bounds are $O bigl((2-epsilon)^n bigr)$ for $epsilon>0$ independent of the number of vertices $n$.
国家哲学社会科学文献中心版权所有