期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2016
卷号:6
期号:5
页码:2403-2414
DOI:10.11591/ijece.v6i5.10713
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Wireless Sensor Networks (WSN) differ from traditional wireless communication networks in several characteristics. One of these characteristics is power awarness, due to the fact that the batteries of sensor nodes have a restricted lifetime and are difficult to be replaced. Therefore, all protocols must be designed to minimize energy consumption and preserve the longevity of the network. In this paper, we propose (i) to fairly balance the load among nodes. For this, we generate an unequal clusters size where the cluster heads (CH) election is based on energy availability, (ii) to reduce the energy consumption due to the transmission by using multiple metrics in the CH jointure process and taking into account the link cost, residual energy and number of cluster members to construct the routing tree and (iii) to minimize the number of transmissions by avoiding the unnecessary updates using sensitive data controller. Simulation results show that our Advanced Energy-Efficient Unequal Clustering (AEEUC) mechanism improves the fairness energy consumption among all sensor nodes and achieves an obvious improvement on the network lifetime.
其他摘要:Wireless Sensor Networks (WSN) differ from traditional wireless communication networks in several characteristics. One of these characteristics is power awarness, due to the fact that the batteries of sensor nodes have a restricted lifetime and are difficult to be replaced. Therefore, all protocols must be designed to minimize energy consumption and preserve the longevity of the network. In this paper, we propose (i) to fairly balance the load among nodes. For this, we generate an unequal clusters size where the cluster heads (CH) election is based on energy availability, (ii) to reduce the energy consumption due to the transmission by using multiple metrics in the CH jointure process and taking into account the link cost, residual energy and number of cluster members to construct the routing tree and (iii) to minimize the number of transmissions by avoiding the unnecessary updates using sensitive data controller. Simulation results show that our Advanced Energy-Efficient Unequal Clustering (AEEUC) mechanism improves the fairness energy consumption among all sensor nodes and achieves an obvious improvement on the network lifetime.
关键词:Wireless Sensor Networks;Unequal cluster size;Sensitive data controlling;Routing Protocol;Energy Saving