期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2016
卷号:6
期号:1
页码:160-166
DOI:10.11591/ijece.v6i1.pp160-166
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:In this paper, we suggest a method of detecting defects by applying Hough transform and least squares on ceramic images obtained from non-destructive testing. In the ceramic images obtained from non-destructive testing, the background area, where the defect does not exist, commonly shows gradual change of luminosity in vertical direction. In order to extract the background area which is going to be used in the detection of defects, Hough transform is performed to rotate the ceramic image in a way that the direction of overall luminosity change lies in the vertical direction as much as possible. Least squares is then applied on the rotated image to approximate the contrast value of the background area. The extracted background area is used for extracting defects from the ceramic images. In this paper we applied this method on ceramic images acquired from non-destructive testing. It was confirmed that extracted background area could be effectively applied for searching the section where the defect exists and detecting the defect.
其他摘要:In this paper, we suggest a method of detecting defects by applying Hough transform and least squares on ceramic images obtained from non-destructive testing. In the ceramic images obtained from non-destructive testing, the background area, where the defect does not exist, commonly shows gradual change of luminosity in vertical direction. In order to extract the background area which is going to be used in the detection of defects, Hough transform is performed to rotate the ceramic image in a way that the direction of overall luminosity change lies in the vertical direction as much as possible. Least squares is then applied on the rotated image to approximate the contrast value of the background area. The extracted background area is used for extracting defects from the ceramic images. In this paper we applied this method on ceramic images acquired from non-destructive testing. It was confirmed that extracted background area could be effectively applied for searching the section where the defect exists and detecting the defect.