期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2016
卷号:14
期号:2A
页码:363-371
DOI:10.12928/telkomnika.v14i2A.4324
语种:English
出版社:Universitas Ahmad Dahlan
摘要:Active anti disturbance controller is applied to UAV flight control system. First, tracking differentiator is used for arranging transient process to achieve the purpose of quickly and accurately tracking the given signal. Then the uncertain disturbance of the system is estimated in a real-time way by expanding state observer and control input is introduced in the form of feedback quantity to play the real-time role in compensating system disturbance, so as to realize attitude stabilization control. Asymptotic stability of control system is proved on the basis of the stability theory of Lyapunov and the design of robust controller is completed by combining with linear matrix inequality. Through simulated test, compare state response curve under different time delay conditions and the result proves that the designed robust controller can resolve the problems such as uncertain modeling error, disturbance and time delay existing in the system, with certain robustness. Result of numerical simulation shows that this method is characterized by strong anti-disturbance capacity, good control quality, high accuracy and simple algorithm.
其他摘要:Active anti disturbance controller is applied to UAV flight control system. First, tracking differentiator is used for arranging transient process to achieve the purpose of quickly and accurately tracking the given signal. Then the uncertain disturbance of the system is estimated in a real-time way by expanding state observer and control input is introduced in the form of feedback quantity to play the real-time role in compensating system disturbance, so as to realize attitude stabilization control. Asymptotic stability of control system is proved on the basis of the stability theory of Lyapunov and the design of robust controller is completed by combining with linear matrix inequality. Through simulated test, compare state response curve under different time delay conditions and the result proves that the designed robust controller can resolve the problems such as uncertain modeling error, disturbance and time delay existing in the system, with certain robustness. Result of numerical simulation shows that this method is characterized by strong anti-disturbance capacity, good control quality, high accuracy and simple algorithm.