首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:ANALISIS KLASIFIKASI MASA STUDI MAHASISWA PRODI STATISTIKA UNDIP dengan METODE SUPPORT VECTOR MACHINE (SVM) dan ID3 (ITERATIVE DICHOTOMISER 3)
  • 本地全文:下载
  • 作者:Dwi Ispriyanti ; Abdul Hoyyi
  • 期刊名称:MEDIA STATISTIKA
  • 印刷版ISSN:1979-3693
  • 电子版ISSN:2477-0647
  • 出版年度:2016
  • 卷号:9
  • 期号:1
  • 页码:15-29
  • DOI:10.14710/medstat.9.1.15-29
  • 语种:English
  • 出版社:MEDIA STATISTIKA
  • 摘要:Graduation is the final stage of learning process activities in college. Undergraduate study period in UNDIP’s academic regulations is scheduled in 8 semesters (4 years) or less and maximum of 14 semesters (7 years). Department of Statistics is one of six departments in the Faculty of Science and Mathematics UNDIP. Study period in this department can be influenced by many factors. Those factor are Grade Point Average (GPA) or IPK, gender, scholarship, parttime, organizations, and university entrance pathways. The aim of this paper is to determine the accuracy factors classification. We use SVM (Support Vector Machine method) and ID3 (Iterative Dichotomiser 3). The comparison of SVM and ID3 method, both for training and testing the data generate good accuracy, namely 90%. Especially ID3 training data gives better result than SVM. Keywords: SVM , ID3
  • 其他摘要:Graduation is the final stage of learning process activities in college. Undergraduate study period in UNDIP’s academic regulations is scheduled in 8 semesters (4 years) or less and maximum of 14 semesters (7 years). Department of Statistics is one of six departments in the Faculty of Science and Mathematics UNDIP. Study  period in this department can be influenced by many factors. Those factor are Grade Point Average (GPA) or IPK, gender, scholarship, parttime, organizations, and university entrance pathways. The aim of this paper is to determine the accuracy factors classification. We use SVM (Support Vector Machine method) and ID3 (Iterative Dichotomiser 3). The comparison of SVM and ID3 method, both for training and testing the data generate good accuracy, namely 90%. Especially ID3 training data gives better result than SVM.   Keywords:   SVM , ID3
国家哲学社会科学文献中心版权所有