首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:-Based Multi/Many-Objective Particle Swarm Optimization
  • 本地全文:下载
  • 作者:Alan Díaz-Manríquez ; Gregorio Toscano ; Jose Hugo Barron-Zambrano
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/1898527
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We propose to couple the performance measure and Particle Swarm Optimization in order to handle multi/many-objective problems. Our proposal shows that through a well-designed interaction process we could maintain the metaheuristic almost inalterable and through the performance measure we did not use neither an external archive nor Pareto dominance to guide the search. The proposed approach is validated using several test problems and performance measures commonly adopted in the specialized literature. Results indicate that the proposed algorithm produces results that are competitive with respect to those obtained by four well-known MOEAs. Additionally, we validate our proposal in many-objective optimization problems. In these problems, our approach showed its main strength, since it could outperform another well-known indicator-based MOEA.
国家哲学社会科学文献中心版权所有