首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Privacy-Preserving One-Class Support Vector Machine with Vertically Partitioned Data
  • 本地全文:下载
  • 作者:Qiang Lin ; Huimin Pei ; Kuaini Wang
  • 期刊名称:International Journal of Multimedia and Ubiquitous Engineering
  • 印刷版ISSN:1975-0080
  • 出版年度:2016
  • 卷号:11
  • 期号:5
  • 页码:199-208
  • DOI:10.14257/ijmue.2016.11.5.18
  • 出版社:SERSC
  • 摘要:We establish a new model of privacy-preserving one-class support vector machine (SVM) based on vertically partitioned data. Every participant holds all the data with a part of attributes. They apply different random matrices to establish their own kernel matrix. By sharing these partial kernel matrices, we construct a global kernel matrix and establish linear and nonlinear privacy-preserving models. Experimental results on benchmark data sets verify the validity of the proposed models.
  • 关键词:One-class SVM; random kernel; privacy-preserving; vertically partitioned ; data
国家哲学社会科学文献中心版权所有