首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:An RKHS framework for sparse functional varying coefficient model
  • 作者:Behdad Mostafaiy ; Mohammad Reza Faridrohani ; S. Mohammad E. Hosseininasab
  • 期刊名称:RevStat : Statistical Journal
  • 印刷版ISSN:1645-6726
  • 出版年度:2016
  • 卷号:14
  • 期号:3
  • 页码:311-325
  • 出版社:Instituto Nacional de Estatística
  • 摘要:We study functional varying coe.cient mo del in which both the response and the predictor are functions of a common variable such as time. We demonstrate the esti- mation of the slope function for the case of sparse and noise-contaminated longitudinal data. So far, a few metho ds have been intro duced based on varying coe.cient model. To estimate the slope function, we consider a regularization metho d using a repro- ducing kernel Hilbert space framework. Despite the generality of the regularization method, the procedure is easy to implement. Our numerical results show that the introduced pro cedure p erforms well in some senses.
  • 关键词:functional varying coe.cient model; regularization; reproducing kernel Hilbert space; ; sparsity
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有