首页    期刊浏览 2025年01月21日 星期二
登录注册

文章基本信息

  • 标题:Efectos de un protocolo de entrenamiento de alta intensidad sobre marcadores fisiológicos de estrés en ratas. [Physiological effects of the stress induced by a high-intensity exercise protocol in rats].
  • 本地全文:下载
  • 作者:Daniel Camiletti-Moirón ; Gerardo Medina ; Ángel Núñez
  • 期刊名称:RICYDE. Revista Internacional de Ciencias del Deporte. doi:10.5232/ricyde
  • 印刷版ISSN:1885-3137
  • 出版年度:2014
  • 卷号:11
  • 期号:40
  • 页码:145-162
  • 语种:Spanish
  • 出版社:Ramón Cantó Alcaraz (Publisher)
  • 摘要:El objetivo del presente estudio fue examinar los posibles efectos del estrés fisiológico producidos por un programa de entrenamiento de alta intensidad (EAI) en ratas. Cuarenta ratas Wistar fueron aleatoriamente distribuidas en 2 grupos experimentales: grupo EAI o grupo control, durante 12 semanas. Se estimaron índices biológicos, parámetros musculares, urinarios, plasmáticos, de perfil lipídico hepático y morfológicos renales. Tanto la ingesta media (P<0.05) como el peso final y de la canal (ambos, P<0,001) fueron menores en el grupo EAI. Los marcadores hormonales reflejaron mayores concentraciones de corticosterona (P<0.05) junto con una disminución de las de testosterona (P<0.05) en el grupo EAI, por lo que la ratio corticosterona/testosterona fue mayor y la de testosterona/corticosterona menor (ambas, P<0.01). A nivel lipídico plasmático, el grupo EAI mostró menores concentraciones de triglicéridos (P<0.01), pero también mayores de colesterol-LDL (P<0.01). A nivel lipídico hepático, la cantidad de grasa fue mayor en el grupo EAI (P<0.01), aunque dicho grupo también presentó menores niveles de triglicéridos (P<0.05). El análisis de morfología renal mostró un aumento del tejido conectivo intersticial en el grupo de EAI (P<0.05). El estrés inducido por el protocolo de EAI pudo conllevar un estado catabólico que podría haber anulado las esperadas ganancias musculares, alteró el perfil lipídico plasmático y hepático y un perfil renal con mayor predisposición a patologías futuras El presente estudio trata de reproducir un modelo de estrés/sobreentrenamiento que podría darse en deportistas con la intención de profundizar algo más en el conocimiento del alcance que este estado fisiológico pudiera inducir a largo plazo en órganos poco estudiados y con ello, en la salud futura del deportista. Abstract The objective of this study was to examine the possible stress physiological effects of a high-intensity training (HIT) in rats. Forty Wistar rats were randomly divided into 2 experimental groups (n=20): EAI or control (sedentary) groups for 12 weeks. Biological, muscle, urinary, plasma, hepatic and renal markers were measured. Food intake (P<0.05), final body weight and carcass weight (both, P<0.001) were significantly lower in the HIT group. Hormonal markers reflected increased levels of corticosterone (P<0.05) and decreased levels of testosterone (P<0.05) in the HIT group. Consequently, the ratio corticosterone/testosterone was higher and the testosterone/corticosterone lower in the HIT group (both, P<0.01). Regarding hepatic lipid profile, the HIT group showed higher liver fat (P<0.01) but lower hepatic triglycerides (P<0.05). Regarding plasma lipid profile, the HIT group showed lower triglycerides concentration (P<0.01) but also higher LDL cholesterol concentrations (P<0.01). Finally, the renal morphology study showed increased kidney connective interstitial tissue (P<0.05). The stress induced by the HIT protocol promoted a catabolism status that could lead to a lower muscular development, a worse hepatic and plasma lipid profile and a renal profile with increased susceptibility to future pathologies. The present study aimed to develop a stress/overtraining protocol that might be carried out in athletes with the purpose to deepen study the effects that this adverse status might induce in the long-term health of the athlete. http://dx.doi.org/10.5232/ricyde2015.04004 -------------------------------------------------------------------------- Referencias/references Adlercreutz, H.; Harkonen, M.; Kuoppasalmi, K.; Naveri, H.; Huhtaniemi, I.; Tikkanen, H.; Remes, K.; Dessypris, A., & Karvonen, J. (1986). Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise. International Journal of Sports Medicine, 7 Suppl 1 , 27-28. Aparicio, V. A.; Nebot, E.; Kapravelou, G.; Sanchez, C.; Porres, J. M.; Lopez Jurado, M., & Aranda, P. (2011). [Resistance training reduces the metabolic acidosis and hepatic and renal hypertrophy caused by the consumption of a high protein diet in rats]. Nutrición Hospitalaria, 26 (6), 1478-1486. Aparicio, V. A.; Tassi, M.; Nebot, E.; Camiletti-Moiron, D.; Ortega, E.; Porres, J. M., & Aranda, P. (2014). High-Intensity Exercise May Compromise Renal Morphology in Rats. International Journal of Sports Medicine , 35 (08): 639-644 http://dx.doi.org/10.1055/s-0033-1354383 Benghuzzi, H.; Tucci, M.; Hughes, J.; Lyon, R., & Adams, S. (2005). Glomerular response to adrenocortical hormone alone or in combination with selenomethionine. Biomedical Science Instrumentation, 41 , 74-79. Brooks, K., & Carter, J. (2013). Overtraining, Exercise, and Adrenal Insufficiency. Journal of Novel Physiotherapies, 3 (125). http://doi.org/10.4172/2165-7025.1000125 Catalina-Romero, C.; Calvo, E.; Sanchez-Chaparro, M. A.; Valdivielso, P.; Sainz, J. C.; Cabrera, M.; Gonzalez-Quintela, A., & Roman, J. (2013). The relationship between job stress and dyslipidemia. Scandinavian Journal of Public Health, 41 (2),142-149. http://dx.doi.org/10.1177/1403494812470400 Czepluch, F. S.; Barres, R.; Caidahl, K.; Olieslagers, S.; Krook, A.; Rickenlund, A.; Zierath, J. R., & Waltenberger, J. (2011). Strenuous physical exercise adversely affects monocyte chemotaxis. Thrombosis and Haemostasis, 105 (1), 122-130. http://dx.doi.org/10.1160/TH10-06-0363 de Salles, B. F.; Simao, R.; Miranda, F.; Novaes Jda, S.; Lemos, A., & Willardson, J. M. (2009). Rest interval between sets in strength training. Sports Medicine, 39 (9), 765-777. http://dx.doi.org/10.2165/11315230-000000000-00000 Depke, M.; Fusch, G.; Domanska, G.; Geffers, R.; Volker, U.; Schuett, C., & Kiank, C. (2008). Hypermetabolic syndrome as a consequence of repeated psychological stress in mice. Endocrinology, 149 (6), 2714-2723. http://dx.doi.org/10.1210/en.2008-0038 Dickhout, J. G., & Krepinsky, J. C. (2009). Endoplasmic reticulum stress and renal disease. Antioxidant and Redox Signaling , 11 (9), 2341-2352. http://dx.doi.org/10.1089/ARS.2009.2705 Estoppey-Stojanovski, L. (1986). [Position of the Council of Europe on the protection of animals]. Developments in Biological Standardization , 64 , 3-5. http://www.ncbi.nlm.nih.gov/pubmed/3792654 Filaire, E.; Bernain, X.; Sagnol, M., & Lac, G. (2001). Preliminary results on mood state, salivary testosterone:cortisol ratio and team performance in a professional soccer team. European Journal of Applied Physiology , 86 (2), 179-184. http://www.ncbi.nlm.nih.gov/pubmed/11822478 Folch, J.; Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226 (1), 497-509. Fragala, M. S.; Kraemer, W. J.; Denegar, C. R.; Maresh, C. M.; Mastro, A. M., & Volek, J. S. (2011). Neuroendocrine-immune interactions and responses to exercise. Sports Medicine, 41 (8), 621-639. http://dx.doi.org/10.2165/11590430-000000000-00000 Fry, A. C.; Kraemer, W. J., & Ramsey, L. T. (1998). Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining. Journal Applied Physiology, 85 (6), 2352-2359. Harriss, D. J., & Atkinson, G. (2011). Update--Ethical standards in sport and exercise science research. International Journal of Sports Medicine, 32 (11), 819-821. http://dx.doi.org/10.1055/s-0031-1287829 Holt, S., & Moore, K. (2000). Pathogenesis of renal failure in rhabdomyolysis: the role of myoglobin. Experimental Nephrology, 8 (2), 72-76. Houston, M. C.; Fazio, S.; Chilton, F. H.; Wise, D. E.; Jones, K. B.; Barringer, T. A., & Bramlet, D. A. (2009). Nonpharmacologic treatment of dyslipidemia. Progress in Cardiovascular Disease, 52 (2), 61-94. http://dx.doi.org/10.1016/j.pcad.2009.02.002 Iglesias, P.; Carrero, J. J., & Diez, J. J. (2012). Gonadal dysfunction in men with chronic kidney disease: clinical features, prognostic implications and therapeutic options. Journal of Nephrology, 25 (1), 31-42. Inagi, R. (2009). Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Nephron Experimental Nephrology, 112 (1), e1-9. http://dx.doi.org/10.1159/000210573 Ishigaki, T.; Koyama, K.; Tsujita, J.; Tanaka, N.; Hori, S., & Oku, Y. (2005). Plasma leptin levels of elite endurance runners after heavy endurance training. Journal of Physiological Anthropology and Applied Human Science, 24 (6), 573-578. Kellmann, M. (2010). Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scandinavian Journal of Medicine and Science in Sports, 20 Suppl 2 , 95-102. http://dx.doi.org/10.1111/j.1600-0838.2010.01192.x Kraemer, W. J.; Fleck, S. J.; Callister, R.; Shealy, M.; Dudley, G. A.; Maresh, C. M.; Marchitelli, L.; Cruthirds, C.; Murray, T., & Falkel, J. E. (1989). Training responses of plasma beta-endorphin, adrenocorticotropin, and cortisol. Medicine and Science in Sports and Exercise, 21 (2), 146-153. Kraemer, W. J.; Noble, B. J.; Clark, M. J., & Culver, B. W. (1987). Physiologic responses to heavy-resistance exercise with very short rest periods. International Journal of Sports Medicine, 8 (4), 247-252. http://dx.doi.org/10.1055/s-2008-1025663 Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, 35 (4), 339-361. Kreher, J. B., & Schwartz, J. B. (2012). Overtraining syndrome: a practical guide. Sports Health, 4 (2), 128-138. http://dx.doi.org/10.1177/1941738111434406 Lehmann, M.; Foster, C., & Keul, J. (1993). Overtraining in endurance athletes: a brief review. Medicine and Science in Sports and Exercise , 25 (7), 854-862. http://www.ncbi.nlm.nih.gov/pubmed/8350709 Lehmann, M.; Wieland, H., & Gastmann, U. (1997). Influence of an unaccustomed increase in training volume vs intensity on performance, hematological and blood-chemical parameters in distance runners. The Journal of Sports Medicine and Physical Fitness, 37 (2), 110-116. Lira, F. S.; Rosa, J. C.; Pimentel, G. D.; Tarini, V. A.; Arida, R. M.; Faloppa, F.; Alves, E. S.; do Nascimento, C. O.; Oyama, L. M.; Seelaender, M.; de Mello, M. T., & Santos, R. V. (2010). Inflammation and adipose tissue: effects of progressive load training in rats. Lipids in Health and Disease, 9 , 109. http://dx.doi.org/10.1186/1476-511X-9-109 Liu, W. Y.; He, W., & Li, H. (2013). Exhaustive training increases uncoupling protein 2 expression and decreases Bcl-2/Bax ratio in rat skeletal muscle. Oxidative Medicine and Cellular Longevity, 2013 , 780719. http://dx.doi.org/10.1155/2013/780719 Lundberg, U. Stress hormones in health and illness: the roles of work and gender. (2005). Psychoneuroendocrinology . 30(10), 1017-1021. Martin-Cordero, L.; Garcia, J. J.; Hinchado, M. D., & Ortega, E. (2011). The interleukin-6 and noradrenaline mediated inflammation-stress feedback mechanism is dysregulated in metabolic syndrome: effect of exercise. Cardiovascular Diabetology, 10 , 42. http://dx.doi.org/10.1186/1475-2840-10-42 Masseroli, M.; O'Valle, F.; Andujar, M.; Ramirez, C.; Gomez-Morales, M.; de Dios Luna, J.; Aguilar, M.; Aguilar, D.; Rodriguez-Puyol, M., & Del Moral, R. G. (1998). Design and validation of a new image analysis method for automatic quantification of interstitial fibrosis and glomerular morphometry. Laboratory Investigation, 78 (5), 511-522. Matsakas, A.; Macharia, R.; Otto, A.; Elashry, M. I.; Mouisel, E.; Romanello, V.; Sartori, R.; Amthor, H.; Sandri, M.; Narkar, V., & Patel, K. (2012). Exercise training attenuates the hypermuscular phenotype and restores skeletal muscle function in the myostatin null mouse. Experimental Physiology, 97 (1), 125-140. http://dx.doi.org/10.1113/expphysiol.2011.063008 McEwen, B. S. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. (2004). Annals of the New York Academy of Sciences , 1-7. http://dx.doi.org/10.1196/annals.1314.001 Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J., & Urhausen, A. (2013). Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Medicine and Science in Sports and Exercise, 45 (1), 186-205. http://dx.doi.org/10.1249/MSS.0b013e318279a10a Moinuddin, I., & Leehey, D. J. (2008). A comparison of aerobic exercise and resistance training in patients with and without chronic kidney disease. Advances in Chronic Kidney Disease, 15 (1), 83-96. http://dx.doi.org/10.1053/j.ackd.2007.10.004 Oudman, I.; Clark, J. F., & Brewster, L. M. (2013). The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: a systematic review. PLoS One, 8 (1), e52879 http://dx.doi.org/10.1371/journal.pone.0052879 Peng, C. C.; Chen, K. C.; Hsieh, C. L., & Peng, R. Y. (2012). Swimming Exercise Prevents Fibrogenesis in Chronic Kidney Disease by Inhibiting the Myofibroblast Transdifferentiation. PLoS One, 7 (6), e37388. http://dx.doi.org/10.1371/journal.pone.0037388 Peng, C. C.; Chen, K. C.; Lu, H. Y., & Peng, R. Y. (2012). Treadmill exercise improved adriamycin-induced nephropathy. Journal of Biological Regulators and Homeostatic Agents, 26 (1), 15-28. Pereira, B. C.; Filho, L. A.; Alves, G. F.; Pauli, J. R.; Ropelle, E. R.; Souza, C. T.; Cintra, D. E.; Saad, M. J., & Silva, A. S. (2012). A new overtraining protocol for mice based on downhill running sessions. Clinical and Experimental Pharmacology and Physiology, 39 (9), 793-798. http://dx.doi.org/10.1111/j.1440-1681.2012.05728.x Pinheiro-Mulder, A.; Aguila, M. B.; Bregman, R., & Mandarim-de-Lacerda, C. A. (2010). Exercise counters diet-induced obesity, proteinuria, and structural kidney alterations in rat. Pathology - Research and Practice, 206 (3), 168-173. http://dx.doi.org/10.1016/j.prp.2009.11.004 Poortmans, J. R., & Ouchinsky, M. (2006). Glomerular filtration rate and albumin excretion after maximal exercise in aging sedentary and active men. tHE Journals of Gerontology series A: Biological Science and Medical Science, 61 (11), 1181-1185. Priya, P. H., & Reddy, P. S. (2012). Effect of restraint stress on lead-induced male reproductive toxicity in rats. Journal Expermiental Zoology part A: Ecological Genetic and Physiology, 317 (7), 455-465. http://dx.doi.org/10.1002/jez.1738 Reeves, P. G.; Nielsen, F. H., & Fahey, G. C., Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition, 123 (11), 1939-1951. http://www.ncbi.nlm.nih.gov/pubmed/8229312 Rosmond, R. (2005). Role of stress in the pathogenesis of the metabolic syndrome. Psychoneuroendocrinology, 30 (1), 1-10. Ruiz, J. R.; Mesa, J. L.; Mingorance, I.; Rodriguez-Cuartero, A., & Castillo, M. J. (2004). [Sports requiring stressful physical exertion cause abnormalities in plasma lipid profile]. Revista Española de Cardiología, 57 (6), 499-506. Skenderi, K. P.; Kavouras, S. A.; Anastasiou, C. A.; Yiannakouris, N., & Matalas, A. L. (2006). Exertional Rhabdomyolysis during a 246-km continuous running race. Medicine and Science in Sports and Exercise, 38 (6), 1054-1057. http://dx.doi.org/10.1249/01.mss.0000222831.35897.5f Slivka, D. R.; Hailes, W. S.; Cuddy, J. S., & Ruby, B. C. (2010). Effects of 21 days of intensified training on markers of overtraining. Journal of Strength and Conditioning Research, 24 (10), 2604-2612. http://dx.doi.org/10.1519/JSC.0b013e3181e8a4eb Smith Gd Fau - Ben-Shlomo, Y.; Ben-Shlomo Y Fau - Beswick, A.; Beswick A Fau - Yarnell, J.; Yarnell J Fau - Lightman, S.; Lightman S Fau - Elwood, P., & Elwood, P. (2005). Cortisol, testosterone, and coronary heart disease: prospective evidence from the Caerphilly study. Circulation, 112 (3), 332-340. Sweat, F.; Puchtler, H., & Rosenthal, S. I. (1964). SIRIUS RED F3BA AS A STAIN FOR CONNECTIVE TISSUE. Archives of Pathology, 78 , 69-72. Urhausen, A.; Gabriel, H., & Kindermann, W. (1995). Blood hormones as markers of training stress and overtraining. Sports Medicine, 20 (4), 251-276. Wang, F. F.; Wang, Q.; Chen, Y.; Lin, Q.; Gao, H. B., & Zhang, P. (2012). Chronic stress induces ageing-associated degeneration in rat Leydig cells. Asian Journal of Andrology, 14 (4), 643-648. http://dx.doi.org/10.1038/aja.2011.183 Warren, J. D.; Blumbergs, P. C., & Thompson, P. D. (2002). Rhabdomyolysis: a review. Muscle and Nerve, 25 (3), 332-347. http://dx.doi.org/10.1002/mus.10053 Wu Gl Fau - Chen, Y. S.; Chen Ys Fau - Huang, X. D.; Huang Xd Fau - Zhang, L. X., & Zhang, L. X. (2012). Exhaustive swimming exercise related kidney injury in rats protective effects of acetylbritannilactone. International Journal of Sports Medicine, 33 (1), 1-7. http://dx.doi.org/10.1055/s-0031-1284397 Xiao, W.; Chen, P., & Dong, J. (2012). Effects of overtraining on skeletal muscle growth and gene expression. International Journal of Sports Medicine, 33 (10), 846-853. http://dx.doi.org/10.1055/s-0032-1311585
  • 关键词:estrés fisiológico;hipertrofia;riñón;metabolismo lipídico;ratas / Stress, physiological;hypertrophy, kidney, lipid metabolism, rats.
国家哲学社会科学文献中心版权所有