首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:On the Number of Integer Recurrence Relations
  • 本地全文:下载
  • 作者:Yogesh Kumar ; N.R. Pillai ; R.K. Sharma
  • 期刊名称:Defence Science Journal
  • 印刷版ISSN:0976-464X
  • 出版年度:2016
  • 卷号:66
  • 期号:6
  • 页码:605-611
  • 出版社:Defence Scientific Information & Documentation Centre
  • 摘要:This paper presents the number of k-stage integer recurrence relations (IRR) over the ring Z 2 which generates sequences of maximum possible period (2 k -1)2 e-1 for e > 1. This number corresponds to the primitive polynomials mod 2 which satisfy the condition proposed by Brent and is2 (e-2)k+1 (2 k-1 -1) for e > 3 . This number is same as measured by Dai but arrived at with a different condition for maximum period. Our way of counting gives an explicit method for construction of such polynomials. Furthermore, this paper also presents the number of different sequences corresponding to such IRRs of maximum period.
  • 关键词:Linear feedback shift register;maximum period;primitive polynomial;LFSR
国家哲学社会科学文献中心版权所有