Impact of climate change on wheat production: a case study of Pakistan.
Janjua, Pervez Zamurrad ; Samad, Ghulam ; Khan, Nazakat Ullah 等
Climate change, due to greenhouse gases increasing the earth's
overall temperature, is an emerging issue of agricultural production.
The higher temperatures may negatively affect the growth process of
wheat and decrease the production of wheat. The objective of this study
is to look at the impact of climate change on wheat production which is
the main food crop of Pakistan. The study uses the Vector Auto
Regression (VAR) model to evaluate the impact of global climate change
on the production of wheat in Pakistan. The study considers annual data
from 1960 to 2009. On the basis of this historical data, the study
captures trends for the impact of climate change on wheat production for
the period 2010-2060. The results of the historical data estimation
reveal that up until now, there is no significant negative impact of
climate change on wheat production in Pakistan. However, future wheat
production will significantly depend on the climate change variables.
Therefore. appropriate adaptative and mitigative techniques are
recommended to cope with or at least to reduce this newly emerging
hazard.
JEL classification: Q54, Q53, Q10
Keywords: Climate Change, Global Warming, Greenhouse Gases (GHGs),
C3&C4 Crops
1. INTRODUCTION
Atmospheric condition which remains for some days is called
weather, whereas, if such condition prevails for a season, decade or a
century, it is termed as climate. To keep the pace of growth fossil fuel has been used in order to meet the energy requirement. However, fossil
fuel adds some gases in the atmosphere which are altering the climate
with the passage of time.
1.1. Climate Change
Climate change refers to "change in climate due to natural or
anthropogenic activities and this change remain for a long period of
time." [IPCC (2007)]
The gases responsible for the global warming are known as
Greenhouse Gases (GHGs), which are comprised of Carbon Dioxide (C[O.sub.2]), Methane (C[H.sub.4]), Nitrous Oxide ([N.sub.2]O) and water
vapors. These gases are produced by a number of anthropogenic activities
(Motha and Baier). C[O.sub.2] is mainly produced during the combustion
of wastes, carbon, wood and fossil fuels. Methane is produced during the
mining of coal, gas and oil and during their transportation, whereas,
Nitrous Oxide is produced during agricultural and industrial activities.
Man is responsible for this newly emerging C[O.sub.2] enriched
world because since the pre industrial time C[O.sub.2] concentration has
increased from 280ppm (1) to 380ppm due to deforestation, massive use of
fossil fuels etc. [Stern (2006)] Concentration of GHGs as a result of
anthropogenic activities are increasing at a rate of 23ppm per decade,
which is highest rise since the last 6.5 million years. Percentage
contribution of different sectors in the atmospheric concentration of
GHGs is from energy sector 63 percent, agriculture 13 percent, industry
3 percent, land use and forestry 18 percent and waste 3 percent
[Rosegrant, et al. (2008)]. Climate change is an externality which is
mainly caused by particular economic activities, and the geographical
position of many developing countries makes them very much vulnerable to
climate change. According to the IPCC prediction, in the absence of any
policy to abate the GHGs emission. GHGs would increase from 550ppm to
700ppm at the mid of current century and this level of GHGs would cause
to accelerate the temperature from 3[degrees]C since the pre industrial
era to 6[degrees]C. (Stern 2006). (2)
Earth gains solar energy from sun in the form of sun light, and the
atmosphere, which is composed of different GHGs, holds these energy rays
and passes them on to the earth and then let them to go back into the
space. So the atmosphere plays a vital role to maintain the earth's
average temperature at a level of 15[degrees]C [Edwards (1999)].
Global warming is a real issue which is directly caused by the
higher level of C[O.sub.2] in the atmosphere, whereby GHGs trap the sun
rays and do not let them go back to space. Higher level of C[O.sub.2],
produced by anthropogenic activities, intensifies concentration of GHGs,
traps more light and causes to increase earth's overall temperature
[Brown (1998)]. Some of the consequences of global warming may appear in
the form of more frequent floods and drought, food shortage, non
supporting weather conditions, newly born diseases, sea level rise, etc.
The concentration of these GHGs are mounting in the atmosphere through
number of ways like anthropogenic activities, deforestation etc. It is
expected that up to 2100 this concentration would become 3 times as much
as the preindustrial time causing 3 to 10[degrees]C hike in temperature
[Tisdell (2008)].
1.2. Possible Effects of Climate Change on Agriculture
Agriculture is the most vulnerable sector to climate change.
Agriculture productivity is being affected by a number of factors of
climate change including rainfall pattern, temperature hike, changes in
sowing and harvesting dates, water availability, evapotranspiration (3)
and land suitability. All these factors can change yield and
agricultural productivity [Harry, et al. (1993)]. The impact of climate
change on agriculture is many folds including diminishing of
agricultural output and shortening of growth period for crops. Countries
lying in the tropical and sub tropical regions would face callous
results, whereas regions in the temperate zone would be on the
beneficial side.
Wheat plant's stalk is normally 2 to 4 feet high and having
grass like leaves each of which is normally 8 to 15 inches in length.
The top of each stalk is having a spike which is normally 2 to 8 inches
in length, it is the grain rich part of wheat plant, each spike contains
20 to 100 kernels (grains) whereas, some spike contains up to 300
kernels depending upon the climate conditions. According to Zadoks scale
wheat has ten growth stages which are germination, main stem leaf production, tiller production, stem elongation, booting, heading,
anthesis, grain milk stage, grain dough stage and ripening. Winter
plants require minimum temperature of 5 to 10[degrees]C in order to come
out of the dormancy period, and hence wheat, which is a winter crop,
also requires long cold season in order to hasten plant development
before flowering occurs, so higher temperature delay the vernalisation
process in wheat [Chouard (1960)].
C[O.sub.2] is regarded as the driving factor of climate change,
however its direct effect on plant is positive [Warrick (1988)]
C[O.sub.2] enriches atmosphere positively and affects the plants in two
ways. First, it increases the photosynthesis process in plants. This
effect is termed as carbon dioxide fertilisation effect. This effect is
more prominent in C3 plants because higher level of C[O.sub.2] increases
rate of fixed carbon and also suppresses photorespiration. (4) Second,
increased level of C[O.sub.2] in atmosphere decreases the transpiration (5) by partially closing of stomata and hence declines the water loss by
plants. Both aspects enhance the water use efficiency of plants causing
increased growth.
The crops which exhibit positive responses to enhanced C[O.sub.2]
are characterised as C3 crops including wheat, rice, soybean, cotton,
oats, barley and alfalfa whereas, the plants which show low response to
enhanced C[O.sub.2] are called C4 crops including maize, sugarcane,
sorghum, millet and other crops.
Warrick study for USA, UK and Western Europe regarding the impact
of increase in temperature on the wheat productivity indicates that
impact of increase in temperature is catastrophic in terms of yield
losses because higher temperature accelerates the evapotranspiration
process creating moisture stress [Warrick (1988)]. It also shorten the
growth period duration of wheat crop and this becomes more severe
regarding yield losses if it occurs during the canopy formation because
less time will be available for vernalisation process and the formation
of kernels. Wetter conditions are beneficial for wheat yield whereas
drier are harmful and cause to decrease the productivity.
In Pakistan wheat is sown in winter season, preferably in November.
Estimated land, on which wheat is cultivated in Pakistan, is 9045
thousand hectare and per hectare wheat yield is 2657 kg. [Khan, et al.].
Per head consumption of wheat in Pakistan is about 120 kg which makes
the importance of this food crop. The water available for the
cultivation of wheat in Pakistan is 26 MAF (million acre feet) which is
still 28.6 percent lower than the normal requirement of water
[Rosegrant, et al. (2008)], Almost all the models predict that climate
change will stress the wheat yield in South Asian region. According to
the 4th IPCC report cereal yield could decrease up to 30 percent by 2050
in South Asia along with the decline of gross per capita water
availability for South Asia from 1820[m.sup.3] in 2001 to 1140[m.sup.3]
in 2050. Water supply is scarce in many part of the country. In near
future a dramatic decline in the water availability would cast a sharp
decline towards the production of agricultural productivity.
1.3. Objectives of Study
The primary purpose of this study is whether the global warming
negatively affects the wheat production in Pakistan. More specifically,
what has been the impact of change in temperature and precipitation on
the wheat production in Pakistan? How far possible future changes in
temperature and precipitation may affect the level of wheat production
in Pakistan? Moreover, along with core variables of temperature,
precipitation, carbon dioxide, area under wheat cultivation and water,
the study also aims to investigate the role of a number of other
variables on the wheat production of Pakistan.
1.4. Scope and Limitation of Study
This study assumes Pakistan as a homogenous region. (6) It
considers two basic variables of climatic change, namely temperature and
precipitation. It does not consider the impact of climatic change on
wheat production through humidity due to nonavailability of wide range
of time series data about the level of humidity in Pakistan. In context
of dependent variable, scientists sometimes consider yield (per unit
output) in place of total output to investigate the impact of various
independent variables. However, this study does not consider yield due
to non-availability of data on various factors (including different
features of soil, etc.) that may influence yield.
2. LITERATURE REVIEW
Warrick (1988) investigated that at higher level of C[O.sub.2] in
the atmosphere, C3 crops specially wheat would show improvement in water
use efficiency through less transpiration, in such case at 2x C[O.sub.2]
concentration level (680ppm) wheat production would be increased 10
percent to 50 percent for mid and high latitude region of Europe and
America. However, 2[degrees]C increase in temperature would decrease the
production by 3 percent to 17 percent which might be offset by higher
level of precipitation. He analysed that for each [degrees]C increase in
temperature would cause to shift the geographical location for crops
production to several hundred kilometers towards mid and high latitude.
Lobell, et al. (2005) used CERES-Wheat simulation model for the
climate trend effect on wheat production in the Mexico region. They
studied the climate trend and wheat yield for the last two decades from
1988 to 2002. They found that the climate had favoured during the two
decades and resulted in 25 percent increase in wheat production. It
means climate was having positive effect on the wheat yield for this
region. However 25 percent increase is less as compared to the previous
studies which predicted higher increase in wheat productivity for this
region.
Xiao, et al. (2005) carried out the investigation in order to check
the effect of climate variability on high altitude crop production and
to check whether the wheat yield at high altitude could be affected by
the climate variability. For this purpose they selected two sites,
Tonguei Metrological station 1798m above the sea level and Peak of Lulu
Mountains 2351m above the sea level. They investigated the effect for
the time period from 1981 to 2005. Their results showed that yield of
both the sites increased during this period bearing positive change in
temperature and precipitation. Initially up to 1998 yield of two
altitudes was high but after that yield of high altitude showed an
increasing trend as compared to loss at low altitude. The simulated
results up to 2030 also showed that the agriculture production of wheat
for low altitude would increase by 3. l percent and that of high
altitude would increased by 4.0 percent.
Hussain and Mudasser (2006) used Ordinary Least Square (OLS) method
to assess the impact of climate change on two regions of Pakistan, Swat and Chitral 960m and 1500m above the sea level, respectively. They
investigated whether increase in temperature up to 3[degrees]C would
decrease the growing season length (GSL) of the wheat yield of this
county. Their result showed that increase in temperature would create
positive impact on Chitral district due to its location on high altitude
and negative impact on Swat because of its low altitude position. An
increase in temperature up to 1.5[degrees]C would create positive impact
on Chitral and would enhance the yield by 14 percent and negative effect
on Swat by decreasing its yield by 7 percent. A further increase in
temperature up to 3[degrees]C would decrease the wheat yield in Swat by
24 percent and increase in Chitral district by 23 percent. They
suggested adaptation strategies of cultivating high yielding varieties
for warmer areas of northern region of Pakistan because of expected
increasing temperature in the future.
Tobey, et al. (1992) used SWOPSIM statistical world policy
simulation based on General Circulation Model (GCM). The model used by
them is static in nature in the sense that it presents only on spot
effect of doubling of C[O.sub.2] on global agriculture. The model used
20 agriculture commodities. According to their result the negative
impact of climate change on some region would not sabotage the world
agriculture market rather this negative impact would be counterbalanced
by agriculture yield of some other region which would experience
positive impact of the global warming of climate change.
Zhang and Nearing (2005) used Hardley Centre Model (HadCM3) for
their study about the wheat productivity in Central Oklahoma. They used
three scenarios A2a, B2a and GGal for the current time period
(1950-1999) and future time period (2070-2099). The simulations model
projected that annual future precipitation would decrease by 13.6
percent, 7.2 percent and 6.2 percent for the three said scenarios
respectively, whereas temperature would increase by 5.7[degrees]C,
4[degrees]C and 4.7[degrees]C respectively. They concluded that the
short of rainfall in summer and not in winter will affect the yield
whereas effect of increased temperature will be offset by the carbon
fertilisation.
Winters, et al. (1996) analysed the impact of global warming on the
archetype structure for Africa, Asia and Latin America. They used
Comparable General Equilibrium (CGE) model for their study. They
concluded that these entire three regions will face agriculture loss in
cereal and export crops and hence income losses. They said that Africa
would be the most negatively affected by this climate change because its
economy is relying very heavily on agriculture output. They investigated
that higher substitution possibility for increase in import cereal could
do more to reduce income losses and development efforts regarding
production of export crops in order to generate foreign exchange.
Gbetibouo and Hassan (2004) employed Ricardian model on wheat,
sorghum, maize, sugarcane, ground nut, sunflower and soybean for the
South African region. They found that temperature increase would be
having positive impact on the agriculture production of maize, sorghum,
sunflower, soybean whereas it would be having negative impact on
sugarcane and wheat productivity. They concluded that this region is
already having high temperature and any further increase in temperature
in future due to climate change would havoc the wheat productivity. They
suggested replacing wheat by maize and sorghum or other heat adapted
crops in order to avoid possible loss of yield due to increased
temperature.
Wolf, et al. (1996) compared five wheat models designed for Europe
at different levels of agronomic conditions] They concluded that almost
all the models predicted the same results. Their results showed that
temperature increase would result in yield reduction whereas increased
level of precipitation and C[O.sub.2] fertilisation would have positive
impact on the production of wheat for Europe.
Anwar, et al. (2007) used the Australian Commonwealth Scientific
and Industrial Research Organisation (CSIRO's) global atmospheric
model under three climate change scenarios which were Low, Mid and High
for the time period of 2000-2070 for South-East Australian location.
Their results showed that for all the three scenarios the medium wheat
yield declined by about 29 percent, however positive affect of
C[O.sub.2] reduced this decline in production from 29 percent to 25
percent. C[O.sub.2] fertilisation affect offset a very small level of
low rain fall and higher temperature. They suggested that higher yield
productivity could be made through better agronomic strategies and
breeds of wheat.
Cerri, et al. (2007) used simulation model for Central South region
of Brazil up to 2050. They revealed that 3[degrees]C to 5[degrees]C
increase in temperature and 11 percent increase in precipitation would
cause to decrease the productivity of wheat to the level equal to one
million ton of wheat. They ascertained that in Brazil wheat was being
cultivated at the threshold level of temperature and any further
addition to this level of temperature would cause to decline
agricultural production specially wheat. They further concluded that
most of the developing countries lying on the tropical belt and relying
on agriculture would face losses in agricultural yield.
Zhai, et al. (2009) used comparable general equilibrium (CGE) model
in order to examine the impact of climate change on agriculture sector
of China in 2080. Their results showed 1.3 percent decline of
agricultural share in GDP. The CGE simulation results showed that in
2080 agricultural output would become slow which ultimately leads to
output losses except wheat which showed enhancement in output because of
increase in global wheat demand. The simulation results also showed that
as compared to world average agricultural production the agricultural
productivity in China would decline less.
Zhai and Zhuang (2009) made a study on Southeast Asian region to
investigate the economic impact of climate change on the said region by
suing CGE model. According to them impact is not consistent throughout
the world and developing countries would face large losses. According to
the simulation results made by them up to 2080 Southeast Asia would face
1.4 percent decline in GDP. Crop productivity would fall up to 17.3
percent, whereas, the agriculture productivity of paddy rice would fall
16.5 percent and that of wheat up to 36.3 percent. In future, the
Southeast Asian countries' dependency on import of these
agricultural products would increase creating more welfare losses and
hence weakening the term of trade of this region.
3. METHODOLOGY
3.1. Vector Auto Regression (VAR) Model
Vector autoregressive model (VAR) was developed by Sims (1980).
Christopher Sim and Litterman urged that it is better to use VAR model
for forecasting instead of structural equation model. VAR model
superficially resembles simultaneous equation modeling in that we
consider several endogenous variables together. But each endogenous
variable is explained by its lagged or past values and the lagged values
of all other endogenous variables in the model. Usually there is no
exogenous variable in the model. Sim developed VAR model on the basis of
true simultaneity among the exogenous and endogenous variables. All
variables used in this model are endogenous and believed to interact
with each others. (8)
3.2. General From of VAR Model
The general form of VAR model in the matrix form is as follows:
[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]
However, in the equation form the model can be expressed as
follows:
[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]
Where [GAMMA](L) is matrix of polynomial in lag operator. The
specific form of the model which we used for our study is as follows;
Wheat Production = f (Temperature, Carbon dioxide, Precipitation,
Agricultural Credit, Wheat Procurement Price, Fertilisers takeoff,
Technology, Land under wheat cultivation, Water availability) + Ui
[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]
Data and Variables
Wheat production data is collected from different editions of
Economic Survey of Pakistan. We consider the amount of wheat in thousand
tons. The direct impact of carbon dioxide on the production of wheat is
positive, as it enhances the water use efficiency of plants. The data
regarding the C[O.sub.2] is collected data source from the website of
Carbon Dioxide Information Analysis Centre and all emission estimates
are expressed in thousand metric tons of carbon. Temperature assumed to
be having negative impact on wheat productivity for the regions which
lie on the tropical or near to the tropical regions. We consider
temperature in Celsius degree centigrade. Data source is Metrological
Department of Pakistan. Precipitation assumed to be having positive
impact on the production of wheat. Our source of data for precipitation
is Metrological Department of Pakistan. The gauge of precipitation is
millimetre. Similarly, data source for other variables like agricultural
credit, wheat procurement price, fertilisers offtake and technology, is
Economic Survey of Pakistan.
4. RESULTS AND INTERPERTATION (9)
4.1. Unit Root and Cointegration Test
Before going to incorporate the Vector Autoregression (VAR) model
we have to check the unit root of all the variables of our study. For
this we apply Augmented Dicky-Fuller (ADF) test to our variables. The
results of the ADF test are shown in the Table 1.
The results in the Table 1 show that all the variables are
non-stationary at conventional level as the observed values are greater
than 5 percent critical values. However, all the variables of our study
are stationary at first difference, because observed values of variables
are less than the 5 percent critical values. From the results it is
concluded that all the variables are integrated of order one.
We apply Johansen's cointegration technique which is
multivariate generalisation of the Dickey-Fuller test. Johansen's
technique uses Trace test and Max-Eigen test statistics. The results are
obtained by using Eviews 5, AIC is used for choice of lag length and the
optimal lag length is 1 (at first difference). Table 2 gives the results
of the cointegration relationship.
Results in Table 2 express that t-stat values are less than 5
percent critical values which exhibit that the null hypothesis of no
co-integrating relationship is accepted at the conventional significance
level. This is also confirmed by max-eigen statistics of no
co-integrating relationship. And the absence of no co-integrating
association necessitates application of VAR in first difference.
4.2. Results from Vector Autoregression (VAR) Model
The results of VAR model estimation to our core variables, namely
wheat production (Wheat), carbon dioxide (C[O.sub.2]), average
temperature (Temp), average precipitation (Precip), agricultural land
under wheat cultivation (Area) and water availability (Water) are shown
in the following Table 3. (10)
The statistical values of t-statistics for some of our variables
are significant whereas for some of them is insignificant, but the
higher value of F-statistics makes all the lag terms of our model
statistically significant. The coefficient of determination R-squared
values of our variables is lying between 0 and 1 which shows the
goodness of fit of our model. We consider VAR model with lag 1 because
the values of Akaike AIC and Schwarz Sc for the data using lag 1 is
smaller than that of lag 2, lag 3 and lag 4, so the lower values Akaike
AIC 16.70483 and Schwarz Sc 16.97509 for lag 1 make the model more
parsimonious. Therefore, VAR model for lag 1 for the study is more
preferable as compared to other lag values.
4.3. Prediction of Wheat for 2010
In order to estimate the predicted value for wheat production in
2010 using VAR technique for 1 lag values, the calculation is follows;
E (Wheat 2010) = -7210.404 + 0.186449 (wheat 2009) + 0.131691
(C[O.sub.2] 2009) + 265.6333 (Avg. Temp2009) + 16.29369 (Avg. Prep2009)
+ 95.77185 (Water 2009) + 0.028147 (Area 2009)
= -7210.404 + 0.186449 (24033) + 0.131691 (48174) + 265.6333 (22.6)
+ 16.29369 (39.2) + 95.77185 (142.9) + 0.028147 (9046)
= 24197.09
So the estimated production of wheat according to our calculation
for 2010 is 24197.09 thousand ton, however the actual production of
wheat in 2010 according to the government calculated figure was 23864
thousand ton [Economic Survey (2010)].
4.4. Results of Impulse Response Function
The objective of the impulse response function traces the effect of
a one-time shock to one of the innovation on current and future values
of the endogenous variables. The results of the Cholesky Impulse
Response Function for our model are shown in Figure 1 and in Table 4.
The results in Table 4 depict that one standard deviation shock to
area increases the wheat production by 547.6505 points but in second
period production decreases to 199.3847 points and in next periods it
shows little increase to this level. Similarly, one standard deviation
shock to C[O.sub.2] increases the wheat production by 128.5776 but in
second period the production increases 120.2491 points and so on.
However, one standard deviation shock of temperature creates positive
impact on the production of wheat and increases it by 25.5273 points in
the first period and after that a significant increase of 187.6724
points in the second period and after that in each period the impact
remains positive. The results also express that one standard deviation
shock to precipitation increases the wheat production by 89.05 points,
in the second period the impact becomes significant and increase the
wheat production by 251.51 points. The results show that one unit shock
to water increases the wheat production by 13.30635 points but in second
period the impact becomes significant and increase the wheat production
by 260.7115 points and after that in each period it creates positive
effect on wheat production. The results of these innovations are
portrayed graphically in Figure 1.
[FIGURE 1 OMITTED]
Figure 1 (panel a to f) shows the responses of wheat to one
standard deviation shock to area, C[O.sub.2], precip, temp, water and
wheat. Panel (a) demonstrates that the significant positive impact of
area on wheat but after that the impact becomes insignificant.
Similarly, in panel (b) C[O.sub.2] is creating positive impact on wheat
which remains positive and insignificant. Panels (c & d) offer
positive and significant impact of precip and temp on wheat in the
initial periods. Thereafter the effect remains positive but
insignificant. Similarly, panel (e) demonstrates that initially the
impact of water is significant but after that the impact becomes
insignificant.
4.5. Results from Variance Decomposition
Variance Decomposition or Forecast error variance decomposition
shows the value each variable contributes to the other variables in a
Vector Autoregression (VAR) model:
Table 5
Variance Decomposition
Period S.E. Area C02 Precip
1 409.261 32.49411 1.791134 0.859133
2 474.4401 29.17053 2.661524 6.113525
3 504.4951 29.82685 2.935434 5.859948
4 527.3033 30.11328 3.065968 5.757519
5 546.9704 30.28802 3.121553 5.739494
6 564.2343 30.42154 3.132041 5.762170
7 579.6429 30.52334 3.116208 5.815396
Period Temp Water Wheat
1 0.0706 0.019183 64.76584
2 3.080654 5.852353 53.12142
3 4.226994 9.874881 47.27589
4 5.126905 12.82279 43.11353
5 5.860545 15.09399 39.89641
6 6.455877 16.86583 37.36255
7 6.947042 18.27793 35.32009
Cholesky Ordering: Area C02 Precip Temp Water Wheat.
Table 5 demonstrates percentage variation in wheat production due
to other variables. In period one 32.5 percent of the variation is due
to area under wheat cultivation and less variation due to C[O.sub.2]
(1.79 percent), precipitation (0.85 percent), temperature (0.07 percent)
and water (0.02 percent). In second period 29.2 percent of variation in
wheat production is due to area under wheat cultivation whereas values
of variations in wheat production due to C[O.sub.2], precipitation,
temperature and water are 2.66 percent, 6.11 percent, 3.08 percent, 5.85
percent, respectively. The results show that in the second and following
periods C[O.sub.2], precipitation, temperature and water are showing
positive impact on wheat production. In the seventh period the values of
the climate change variables cause 34 percent of variation in wheat
production including water availability (18 percent), temperature (7
percent), precipitation (6 percent) and carbon dioxide (3 percent)
whereas the share of area under wheat cultivation remains at about 30
percent.
The graphical representations of these results are expressed in
Figure 2.
[FIGURE 2 OMITTED]
Almost all the results of our study are showing positive impact on
the wheat production in Pakistan up to 2010. These results might appear
contrary to the theoretical as well as empirical consideration of
possible negative impact of global warming on the agricultural (wheat)
production in the tropical and sub-tropical regions. However, following
factors might be positively affecting the wheat production in Pakistan:
(1) Land under wheat cultivation is also increasing due to
increased water supply and other factors which may be creating positive
impact on the production of wheat.
(2) The pattern and direction of rain is changing worldwide due to
climatic change. More rain and higher level of precipitation in the
areas of wheat cultivation may have positively impacted the wheat
production. (3) Improvement in technology regarding new ways of
cultivation, hybrid seeds, fertilisers, extension services and
attractive procurement prices are also creating positive impact on the
production of wheat.
4.6. Forecast of Wheat Production 2060
We are considering three scenarios for the year 2060. In first
scenario we are assuming that both the temperature and precipitation
increase and in second scenario we assume that temperature increases and
precipitation remains constant whereas, in third scenario we assume that
temperature increases but precipitation decreases. We are considering
three alternative increases in temperature, namely 2[degrees]C,
4[degrees]C and 5[degrees]C. Moreover, we assume 10 percent increase or
decrease in precipitation. Besides temperature and precipitation we
assume double level concentration of C[O.sub.2] in all the three
scenarios. We do not assume any increase in water availability on the
basis of water scarcity [IPCC (2007)] and take the current level of
water availability.
We use the coefficient values of the variables and constant term
value from the VAR model estimation (Table 2). Moreover, the values of
our variables for 2059 are generated through extrapolation.
Scenario 1
If both the temperature and precipitation increase:
Case 1: If temperature increases by 2[degrees]C and precipitation
increases by 10%
E (Wheat 2060) = -7210.404 + 0.186449 (wheat2059) + 0.131691
(C[O.sub.2]059) +265.6333 (Avg. Temp2059)
+ 16.29369 (Avg. Prep2059) + 95.77185
(Water 2059) + 0.028147 (Area 2059)
= -7210.404 + 0.186449 (115778.2) + 0.131691
(98070) 265.6333
(24.6) + 16.29369 (43.2) + 95.77185 (142.9)
+ 0.028147 (19307)
= 48758.9
Case 2: If temperature increases by 4[degrees]C and precipitation
increases by 10%
E (Wheat 2060) = -7210.404 + 0.186449 (wheat2059) + 0.131691
(C[0.sub.2] 2059) +265.6333 (Avg. Temp2059)
+ 16.29369 (Avg. Prep2059) + 95.77185
(Water 2059) + 0.028147 (Area 2059)
= -7210.404 '+ 0.186449 (115778.2) + 0.131691
(98070) + 265.6333 (26.6) + 16.29369 (43.2) +
95.77185 (142.9) + 0.028147 (19307)
= 49290.1
Case 3: If temperature increases by 5[degrees]C and precipitation
increases by 10%
E (Wheat 2060) = -7210.404 + 0.186449 (wheat2059) + 0.131691 (CO,
2059) +265.6333 (Avg. Temp2059) + 16.29369 (Avg.
Prep2059) + 95.77185 (Water 2059) + 0.028147 (Area
2059)
= -7210.404 + 0.186449 (115778.2) + 0.131691
(98070) + 265.6333 (27.6) + 16.29369 (43.2) +
95.77185 (142.9) + 0.028147 (19307)
= 49555.7
Scenario 2
If temperature increases but precipitation remains constant:
Case 1: If temperature increases b 2[degrees]C and precipitation
remains constant
E (Wheat 2060) = -7210.404 + 0.186449 (wheat2059) + 0.131691
(C[O.sub.2] 059) +265.6333 (Avg. Temp2059) +
16.29369 (Avg. Prep2059) + 95.77185 (Water 2059) +
0.028147 (Area 2059)
= -7210.404 + 0.186449 (115778.2) + 0.131691
(98070) + 265.6333 (24.6) + 16.29369 (39.2)
+ 95.77185 (142.9) + 0.028147 (19307)
= 48693.6
Case 2: If temperature increases b 4[degrees]C and precipitation
remains constant
E (Wheat 2060) = -7210.404 + 0.186449 (wheat2059) + 0.131691
(C[O.sub.2] 059) +265.6333 (Avg. Temp2059) +
16.29369 (Avg. Prep2059) + 95.77185 (Water 2059) +
0.028147 (Area 2059)
= -7210.404 + 0.186449 (115778.2) + 0.131691
(98070) + 265.6333 (26.6) + 16.29369 (39.2)
+ 95.77185 (142.9) + 0.028147 (19307)
= 49224.9
Case 3: If temperature increases b 5[degrees]C and precipitation
remains constant
E (Wheat 2060) = -7210.404 + 0.186449 (wheat2059) + 0.131691
(C[O.sub.2] 059) +265.6333 (Avg. Temp2059) +
16.29369 (Avg. Prep2059) + 95.77185 (Water 2059) +
0.028147 (Area 2059)
= -7210.404 + 0.186449 (115778.2) + 0.131691
(98070) + 265.6333 (27.6) + 16.29369 (39.2)
+ 95.77185 (142.9) + 0.028147 (19307)
= 49490.5
Scenario 3
If temperature increases and precipitation decreases:
Case 1: If temperature increases b 2[degrees]C and precipitation
decreases b 10%
E (Wheat 2060) = -7210.404 + 0.186449 (wheat2059) + 0.131691
(C[0.sub.2] 059) +265.6333 (Avg. Temp2059) +
16.29369 (Avg. Prep2059) + 95.77185 (Water 2059) +
0.028147 (Area 2059)
= -7210.404 + 0.186449 (115778.2) + 0.131691
(98070) + 265.6333 (24.6) + 16.29369 (43.2)
+ 95.77185 (142.9) + 0.028147 (19307)
= 48630.1
Case 2: If temperature increases b 4[degrees]C and precipitation
decreases b 10%
E (Wheat 2060) = -7210.404 + 0.186449 (wheat2059) + 0.131691
(C[O.sub.2] 059) +265.6333 (Avg. Temp2059) +
16.29369 (Avg. Prep2059) + 95.77185 (Water 2059) +
0.028147 (Area 2059)
= -7210.404 + 0.186449 (115778.2) + 0.131691
(98070) + 265.6333 (24.6) + 16.29369 (43.2)
+ 95.77185 (142.9) + 0.028147 (19307)
= 49161.4
Case 3: If temperature increases b 5[degrees]C and precipitation
decreases b 10%
E (Wheat 2060) =-7210.404 + 0.186449 (wheat2059) + 0.131691
(C[O.sub.2] 059) +265.6333 (Avg. Temp2059) +
16.29369 (Avg. Prep2059) + 95.77185 (Water 2059) +
0.028147 (Area 2059)
= -7210.404 + 0.186449 (115778.2) + 0.131691
(98070) + 265.6333 (24.6) + 16.29369 (43.2)
+ 95.77185 (142.9) + 0.028147 (19307)
= 49427
In all the three scenarios the carbon dioxide, temperature and
precipitation are creating positive impact and increase the wheat
production at double level as compared to the current level of wheat
production. In order to attain this level of production we have to
increase land under wheat cultivation. We may conclude from the results
of our study for 2060 that the level of production in 2060 would not be
much higher as compared to the current level of wheat production. The
annual population growth of Pakistan is 1.6 percent at present and
according to our results wheat production around 49000 thousand ton
after 50 years would not be sufficient to fulfil the wheat requirement
of huge population.
5. CONCLUSIONS AND RECOMMENDATIONS
The Vector Autoregression (VAR) model is used in this study in
order to check the impact of climate change on wheat production in
Pakistan. The study used data of the last half century. The results of
historical data estimation reveal that up to now there is no significant
negative impact of climate change on wheat production in Pakistan.
However, future wheat production will significantly depend on the area
under wheat cultivation and the climate change variables. On the basis
of variance decomposition analysis the values of the area under wheat
cultivation and the climate change variables cause 30 percent and 34
percent variation in wheat production, respectively. Therefore, in terms
of climate change the water availability and temperature become focal
point for future wheat production.
Wheat is main food crop of Pakistan. The newly emerging threat of
climatic change may influence the level of wheat production in Pakistan.
Being an agricultural country we should be capable to secure domestic
consumption by increasing the level of wheat production and the surplus
production can be exported abroad to earn foreign exchange. In order to
cope with any type of emerging hazard of climate change the agriculture
sector in Pakistan needs some adaptation strategies. In this regard some
strategic measures are mentioned below:
(1) Water conservation management and the irrigation system have to
be improved.
(2) New heat and drought resistant seeds and plants of wheat have
to be produced.
(3) Wheat cultivation methods shall be adjusted according to the
changing pattern of climate change.
Appendices
APPENDIX-1
INTERNATIONAL EFFORTS TO ABATE THE GHGs
In order to cope with the global warming, a globally emerging
threat, UN formed a body known as United Nation Framework Convention on
Climate Change (UNFCCC) in March, 1994. Most of the countries are
members of this body. Purpose of this body is to share information
regarding emission among signatories' countries [Tisdell (2008)].
It does not impose penalty on the countries, rather it provides a plate
form for the member countries to negotiate and to formulate policies. It
was the success of this body that Kyoto agreement was first negotiated
in 1997 which was ultimately ratified in 2005. The basic motive of this
protocol was to bring back the emission of GHGs, namely Carbon Dioxide
(C[O.sub.2]), Methane (C[H.sub.4]), Nitrous Oxide ([N.sub.2]O),
Hydroflorocarbon (HFCs), Perflorocarbons (PFCs) and Super hexafluoride
(SF6) at 1990 level. For this purpose the protocol proposed different
mechanism to abate the C[O.sub.2] emission. These include clean
development mechanism, emission trading and joint implementation.
USA, being one of the/main polluters, has not ratified the protocol
yet. Countries like China and India are also increasingly contributing
toward emission of GHgs, however, these countries are not obligated per
Kyoto protocol to reduce the emission. In this scenario the perspectives
for success of the Kyoto Protocol in abating GHGs are not quite
promising.
APPENDIX-2
Vector Autoregession Estimates (All Variables)
Sample (Adjusted): 1963 2009
Included Observations: 47 after Adjustments
Standard Errors in () and t-statistics in []
Area C[O.sub.2] Credit Precip
Area(-l) -0.064883 0.214746 239.2333 0.173478
-0.17215 -0.20875 -99.1455 -0.13819
[-0.37690] [ 1.02873] [ 2.41295] [ 1.255321
CO, (-1) -0.267561 0.109282 36.07698 0.07356
-0.15689 -0.19024 -90.3556 -0.12594
[-1.70545] [ 0.57443] [ 0.399281 [ 0.58408]
Credit(-1) 0.000259 -8.48E-05 1.161694 1.36E-05
-9.80E-05 -0.00012 -0.05618 -7.80E-05
[ 2.65257] [-0.71718] [ 20.6774] [ 0.173591
Precip(-l) 0.247076 -0.269314 -71.1753 -0.164234
-0.20561 -0.24932 -118.415 -0.16505
[ 1.20169] [-1.08018] [-0.60106] [-0.99504]
Fert(-1) 0.001482 0.010167 7.489687 0.003299
-0.01068 -0.01295 -6.14835 -0.00857
[ 0.13883] [ 0.78536] [ 1.218161 [ 0.38497]
Tech(-I) 0.242663 0.407497 -384.9706 0.056785
-0.354 -0.42927 -203.882 -0.28418
[ 0.68548] [ 0.94928] [-1.88820] [ 0.19982]
Temp(-1) -0.008867 0.005049 -1.128012 -0.014388
-0.00531 -0.00644 -3.06091 -0.00427
[-1.668431 [ 0.783391 [-0.368521 [-3.37230]
Water(-1) 0.07284 2.081306 350.4493 0.601391
-0.87229 -1.05775 -502.379 -0.70024
[ 0.083501 [ 1.967671 [ 0.697581 [ 0.85884]
Wheat(-1) 0.003373 -0.007272 0.012232 0.002692
-0.00204 -0.00247 -1.1739 -0.00164
[ 1.654961 [-2.942101 (0.010421 [ 1.645031
Wpp(-1) -0.222917 0.0794 32.71849 -0.059676
-0.0651 -0.07895 -37.4954 -0.05226
[-3.424021 [ 1.005751 [ 0.87260] [-1.141851
C 52.47453 -53.82982 18393.52 48.46358
-28.7482 -34.8606 -16557 -23.078
11.825311 [-1.54414] [ 1.110921 [ 2.099991
R-squared 0.416521 0.384924 0.994122 0.579251
Adj. R-squared 0.254443 0.21407 0.992489 0.462377
Sum sq. resides 1670.676 2456.632 5.54E+08 1076.63
S.E. equation 6.812316 8.260737 3923.431 5.468672
F-statistic 2.569888 2.252936 608.8251 4.956178
Log Likelihood -150.6047 -159.6655 -449.3363 -140.279
Akaike AIC 6.876798 7.262361 19.58878 6.437405
Schwarz SC 7.309811 7.695374 20.02179 6.870418
Mean Dependent 35.76338 3.111245 25831.3 1.573699
S.D. Dependent 7.889592 9.318087 45270.32 7.458352
Fert Tech Temp
Area(-l) 0.687013 -0.02471 8.618561
-2.94442 -0.07161 -10.596
(0.233331 [-0.34506] [ 0.81338]
CO, (-1) 3.444679 -0.066577 4.785055
-2.68337 -0.06526 -9.65662
[ 1.28371] [-1.02014] [ 0.49552]
Credit(-1) -0.002183 1.12E-05 0.003055
-0.00167 -4.10E-05 -0.006
[-1.30852] [ 0.276811 [ 0.50878]
Precip(-l) -5.78326 0.177648 -10.76673
-3.51669 -0.08553 -12.6555
[-1.64452] [ 2.07702] [-0.850761
Fert(-1) 0.782923 0.006497 -0.014169
-0.18259 -0.00444 -0.6571
[ 4.28780] [ 1.46293] [-0.02156]
Tech(-I) 2.465155 0.621343 6.876257
--6.05487 -0.14726 -21.7896
[ 0.40714] [ 4.21930] [ 0.31558]
Temp(-1) 0.044118 -0.000722 0.069122
-0.0909 -0.00221 -0.32713
[ 0.485331 [-0.326401 [ 0.21130]
Water(-1) 5.792641 0.286913 45.48795
-14.9196 -0.36286 -53.691
[ 0.38826] (0.790691 [ 0.847221
Wheat(-1) 0.005602 0.001492 0.197967
-0.03486 -0.00085 -0.12546
[ 0.160691 [ 1.759861 [ 1.577941
Wpp(-1) 1.530116 -0.055489 -4.130263
-1.11354 -0.02708 -4.00727
[ 1.374101 [-2.048891 [-1.030691
C -506.7811 19.89534 2790.441
-491.709 -11.959 -1769.51
[-1.030651 [ 1.663631 [ 1.576961
R-squared 0.992285 0.990638 0.896112
Adj. R-squared 0.990141 0.988038 0.867254
Sum sq. resides 488749.8 289.1071 6329574
S.E. equation 116.5177 2.833858 419.3108
F-statistic 462.9994 380.947 31.05276
Log Likelihood -284.0524 -109.3814 -344.2391
Akaike AIC 12.55542 5.122612 15.11656
Schwarz SC 12.98843 5.555625 15.54957
Mean Dependent 1522.216 103.8247 7058.34
S.D. Dependent 1173.506 25.91039 1150.869
Water Wheat Wpp
Area(-l) 0.007442 22.65318 -0.07244
-0.02411 -24.1435 -0.58923
[ 0.30869] [ 0.93827] [-0.12294]
CO, (-1) -0.012215 20.56379 -0.253841
-0.02197 -22.003 -0.53699
[-0.555991 [ 0.93459] [-0.472711
Credit(-1) -4.68E-06 -0.01221 0.001482
-1.40E-05 -0.01368 -0.00033
[-0.34278] [-0.89244] [ 4.43986]
Precip(-l) -0.060098 -42.98465 0.329122
-0.02879 -28.836 -0.70375
[-2.08727] [-1.49066] [ 0.46767]
Fert(-1) -0.002045 0.995073 -0.071977
-0.00149 -1.49722 -0.03654
[-1.36788] [ 0.664611 [-1.96982]
Tech(-I) -0.047733 77.23504 2.061225
-0.04957 -49.6485 -1.21169
[4.96287] [ 1.55564] [ 1.701121
Temp(-1) -0.000186 0.913973 0.001492
-0.00074 -0.74538 -0.01819
[-0.250111 [ 1.226181 [ 0.082031
Water(-1) 0.625117 162.9806 -1.015729
-0.12215 -122.337 -2.98568
[ 5.117471 [ 1.332231 [-0.340201
Wheat(-1) 0.000739 -0.00275 0.00322
-0.00029 -0.28586 -0.00698
[ 2.588171 [-0.009621 [ 0.461481
Wpp(-1) 0.006039 12.51649 0.883514
-0.00912 -9.13073 -0.22284
10.662431 [ 1.370811 [ 3.964821
C 6.453554 -8243.327 -139.2002
-4.02585 -4031.9 -98.3998
[ 1.603031 [-2.044531 [-1.414641
R-squared 0.906808 0.977326 0.979014
Adj. R-squared 0.880921 0.971028 0.973184
Sum sq. resides 32.76306 32861595 19573.04
S.E. equation 0.953984 955.4172 23.31728
F-statistic 35.02998 155.1752 167.9413
Log Likelihood -58.21023 -382.9453 -208.4365
Akaike AIC 2.945116 16.76363 9.337723
Schwarz SC 3.378129 17.19664 9.770736
Mean Dependent 18.40398 12454.49 132.4143
S.D. Dependent 2.764549 5613.135 142.3912
Cholesky Impulse Response Function Results (All Variables)
Period AREA C[O.sub.2] CREDIT PRECIP
1 30.45039 809.7387 106.0832 90.00208
-139.327 -111.475 -73.0187 -71.595
2 185.6106 365.0654 50.77912 44.62358
-164.213 -152.416 -73.5792 -135.887
3 0.498607 353.4052 117.9772 219.0831
-143.281 -123.831 -85.3751 -140.817
4 136.4903 441.4458 119.5399 105.9258
-152.48 -114.192 -103.967 -122.993
5 124.4755 371.913 138.1287 143.7899
-163.925 -122.833 -148.425 -137.241
6 102.3718 386.6433 158.6734 158.2702
-177.214 -126.192 -208.732 -145.653
7 116.6289 394.5593 170.7658 145.055
-200.072 -142.944 -283.565 -153.923
Period FERT TECH TEMP
1 118.3221 -90.60773 222.6611
-69.9337 -68.2235 -63.5585
2 179.6212 233.9517 -60.64521
-141.103 -149.097 -107.984
3 106.2538 213.3566 59.94123
-181.974 -138.727 -95.0237
4 127.5072 137.2606 114.7957
-204.772 -130.891 -91.3838
5 177.0905 146.6219 80.25871
-216.092 -126.26 -92.3835
6 190.8098 112.719 96.66508
-214.908 -118.366 -94.5806
7 202.7625 99.56825 86.03827
-208.49 -118.288 -95.5902
Period WATER WHEAT WPP
1 48.97138 403.3337 0
-59.0487 -41.6007 0
2 175.0948 45.98962 214.0341
-101.943 -107.678 -157.69
3 167.8143 126.1864 72.14544
-114.616 -105.098 -150.726
4 172.4717 187.783 7.462337
-126.559 -97.0428 -150.154
5 194.8332 124.2477 27.36275
-143.041 -107.943 -148.469
6 198.3053 140.5336 15.15495
-153.165 -109.881 -142.854
7 206.6246 141.0355 36.19782
-162.717 -111.251 -135.984
Cholesky Ordering: AREA CO, CREDIT PRECIP FERT TECH TEMP
WATER WHEAT WPP.
Variance Decomposition Results (All Variables)
Period S.E. AREA C[O.sub.2] CREDIT
1 6.812316 0.101578 71.82963 1.23284
2 8.271554 2.82041 62.89583 1.102713
3 9.098741 2.281206 58.92428 1.789357
4 9.651679 2.837714 58.25445 2.208901
5 10.10644 3.144554 56.42069 2.765303
6 10.59023 3.151135 55.02028 3.399926
7 11.27937 3.249452 53.8958 4.008944
Period PRECIP FERT TECH TEMP
1 0.887399 1.533718 0.899382 5.431285
2 0.804515 3.688203 5.01789 4.245606
3 3.745554 3.711039 6.993721 3.665582
4 3.641657 3.878231 6.688857 3.679357
5 4.071251 4.758416 6.732389 3.459711
6 4.532099 5.577992 6.363069 3.380821
7 4.724805 6.343499 5.952118 3.236612
Period WATER WHEAT WPP
1 0.262723 17.82145 0
2 2.635287 13.13747 3.652067
3 3.947308 11.65249 3.28946
4 4.779467 11.34797 2.683392
5 5.833025 10.47013 2.34453
6 6.628659 9.895382 2.050642
7 7.324371 9.411637 1.852764
Cholesky Ordering: AREA C[O.sub.2] CREDIT PRECIP FERT TECH TEMP
WATER WHEAT WPP.
REFERENCES
Afzal, Muhammad (2005) Estimating Long Run Trade Elasticities in
Pakistan-Cointegration Approach. Pakistan Society of Development
Economists.
Anwar, Muhuddin Rajin, O'Leary Garry, McNeil David, Hossain
Hemayet, Nelson Roger (2007) Climate Change Impact on Rain Fed Wheat in
South-eastern Australia. Field Crops Research 104, 139-147.
Brown, Stephen P. A. (1998) Global Warming Policy: Some Economic
Implication. Federal Reserve Bank of Dallas. Economic Review 4th
Quarter.
Carbon Dioxide Information Analysis Center.
Http://cdiac.ornl.gov/trends/emis/pak.html
Cerri, Carlos, P. Eduardo, Gerd Sparovek, Martial Bernoux, Willian
E. Easterling, Jerry M. Melillo, and Cerri Carlos Clemente (2007)
Tropical Agriculture and Global Warming: Impacts and Mitigation Options.
Sci. Agric. (Piracicaba, Braz) 64:1, 83-99.
Chouard, P. (1960) Vernalisation and its Relations to Dormancy.
Annual Review of Plant Physiology 11, 191-238.
Cline, William R. (2007) Global Warming and Agriculture: New
Country Estimates Show developing Countries Face Declines in Agriculture
Productivity. Centre for Global Development (brief).
Deschenes, Olivier and Michael Greenstone (2007) The Economic
Impacts of Climate Change: Evidence from Agriculture Output and Random
Fluctuations in Weather. The American Economic Review 97:1, 354-385.
Edwards, Paul N. (1999) Global Climate Science, Uncertainty and
Politics: Data-Laden Models, Model-Filtered Data. Science as Culture
8:4, 437-472.
Encyclopedia Britanica (2005) The New Encyclopedia. Vol 25.
(edition 15th).
Gbetibouo, G. A. and R. M. Hassan (2004) Measuring the Economic
Impact of Climate Change on Major South African Field Crops: A Ricardian
Approach. Global and Planetary Change 47, 143-152.
Harry, M., Kaiser Susan J. Riha, Daniel S. Wilks, David G.
Rossiter, and Radha Sampath (1993) A Farm-Level Analysis of Economic and
Agronomic Impacts of Gradual Climate Warming. American Agriculture
Economics Association 75, 387-398.
Hussain, Syed Sajidin and Muhammad Mudasser (2007) Prospects for
Wheat Production Under Changing Climate in Mountain Areas of
Pakistan--An Econometric Analysis. Agricultural Systems 94, 494-501.
IPCC (2007) Intergovernmental Panel on Climate Change. 4th
Assessment Report: Climate Change.
Kumar, K. S. and Parikh Jyoti Kavi (2001) Indian Agriculture and
Climate Sensitivity. Global Environmental Change 11, 147-154.
Lang, Gunter, Land Prices and Climate Conditions: Evaluating the
Greenhouse Damage for the German Agriculture Sector.
Lobell, David B., J. Ivan Ortiz-Monasterio, P. Gregory Asner,
Pamela A. Matson, Rosamond L. Naylor, and Walter P. Falcon (2005)
Analysis of Wheat Yield and Climatic Trends in Mexico. Field Crops
Research 94, 250-256.
Margin, G. O., M. I. Travasso, G. R. Rodrignez, Silvina Solmon, and
Mario Nunez (2009) Climate Change and Wheat Production in Argentina.
International Journal of Global Warming 1:1/2/3, 214-226.
Mendelshon, Robert, Wendy Morrison, Michael E. Schlesinger, and
Natalia G. Andronova (2000) Country-Specific Market Impacts of Climate
Change. Climate Change 45, 553-569.
Mendelshon, Robert, William D. Nordhaus, and Daigee Shaw (1993)
Measuring the Impact of Global Warming On Agriculture. Cowles Foundation for Research in Economics at Yale University. (Cowles Foundation
Discussion Paper No. 1045).
Mendelsohn, Robert, Ariel Dinar, and Apurv A. Sanghi (2001) The
Effect of Development on the Climate Sensitivity of Agriculture.
Environment and Development Economics 6, 85-101.
Nasir, Muhammad and Wasim Shahid Malik (n.d.) The Structural Shocks
and Contemporaneous Response of Monetary Policy in Pakistan: An
Empirical Investigation.
Nigol, Seo Sung-No., Robert Mendelsohn and Mohan Munasinghen (2005)
Climate Change and Agriculture in Sri Lanka: A Ricardian Valuation.
Environment and Development Economics 10, 581-596.
Pakistan, Government of (2008-09) Pakistan Economic Survey 2008-09.
Chapter No. 2, Agriculture.
Pecican, Eugen st. (2010) Forecasting Based on Open VAR Modeling.
Romanian Journal of Economic Forecasting 1.
Reilly, J., F. Tubiello, B. McCarl, D. Abler, R. Darwin, K. Fuglie,
S. Hollinger, C. Izaurralde, S. Jagtap, J. Jones, L. Mearns, D. Ojima,
E. Paul, K. Paustian, S. Riha, N. Rosenberg, and C. Rosenzweig (2003)
U.S. Agriculture and Climate Change: New Results. Climate Change 57,
43-69.
Rosegrant, Mark W., Mandy Ewing, Gary Yohe, Ian Burton, Saleemul
Huq, and Rowena Valmonte-Santos (2008) Climate Change and Agriculture
Threats and Opportunities. Federal Ministry for Economic Cooperation and
Development. 1-36.
Rosenzweig, Cynthia and Francesco N. Tubiello (1996) Effects of
Changes in Minimum and Maximum Temperature on Wheat Yields in the
Central US: A
Simulation Study. Agricultural and Forest Meteorology 80, 215-230.
Rosenzweig, Cynthia and Martin L. Parry (1994) Potential Impact of
Climate Change on World Food Supply. Nature 367, 133-138.
Saseendran, S. A., K. K. Singh, S. L. Rathore, S. V. Singh, and S.
K. Sinha (2000) Effect of Climate Change on Rice Production in the
Tropical Humid Climate of Kerala, India. Climate Change 44, 495-514.
Sims, A. Christopher (1980) Macroeconomics and Reality.
Econometrica 48:1, 1-48.
Stern (2006) Stern Review on the Economics of Climate Change. H. M.
Treasury.
Tisdell, Clem (2008) Global Warming and Future of Pacific Island
Countries. International Journal of Social Economics 35:12, 889-903.
Tobey, James, John Reilly, and Sally Kane (1992) Economic
Implication of Global Climate Change for World Agriculture. Journal of
Agricultural and Resource Economics 17:1, 195-204.
Tubiello, F. N., C. Rosenzweig, R. A. Goldberg, S. Jugtap, and J.
W. Jones (2002) Effect of Climate Change on US Crop Production:
Simulation Results Using Two Different GCM Scenario. Part I. Wheat,
Potato, Maize, and Citrus. Climate Research 20, 259-270.
Warrick, R. A. (1988) Carbon Dioxide, Climate Change and
Agriculture. The Geographical Journal 154:2, 221-233.
Wassenaar, T., P. Lagacherie, J. -P. Legros, and M. D. A.
Rounsevell (1999) Modelling Wheat Yield Responses to Soil and Climate
Variability at the Regional Scale. Climate Research 11, 209-220.
Winters, Paul, Rinku Murgai, Elisabeth Sadoulet, Alain De Janvry,
and George Frisvold (1996) Climate Change Agriculture, and Developing
Economies. (Working Paper No. 785.)
Wolf, J., L. G. Evans, M. A. Semenov, H. Eckersten, and A. Iglesias
(1996) Comparison of Wheat Simulation Models Under Climate Change. I.
Model Calibration and Sensitivity Analyses. Climate Research 7, 253-270.
Xiao, Guoju, Qiang Zhang, Yubi Yao, Hong Zhao, and Runyuan Wang
(2008) Impact of Recent Climatic Change on the Yield of Winter Wheat at
Low and High Altitudes in Semi Arid Northwestern China. Agriculture,
Ecosystems and Environment 127, 37-42.
Zhai, Fan and Zhuang Juzhong (2009) Agriculture Impact of Climate
Change: A General equilibrium Analysis with Special Reference to
Southeast Asia. Asian Development Bank Institute. (ADBI Working Paper
131).
Zhanga, X. C. and M. A. Nearing (2005) Impact of Climate Change on
Soil Erosion, Runoff, and Wheat Productivity in Central Oklahoma. Catena 61, 185-195.
Comments
The paper is a good effort to show the impact of environmental
changes on wheat production in Pakistan. However, for publication, the
following points should be considered for improvement.
(1) There should have been a separate section in the study
explaining the channels, may they be scientific or economic, through
which the variables in the analysis affect wheat production.
(2) The study lacks proper justification for the use of Vector
Autoregression methodology. Since their objective is to estimate the
effect of different variables on wheat production, they should have
checked it first for cointegration among the variables. Secondly, all
the variables in VAR are endogenous. So, theoretically speaking, there
should have a feedback effect of wheat production on climate change for
the use of VAR.
(3) The authors show carelessness in giving the historical
development of VAR by saying the Locus criticised Rational Expectations.
The fact is the Rational Expectations helped Locus to criticise
conventional econometric technique for policy evaluation as he believed
that the parameters in the estimated macroeconomic models are not
invariant to the announced or perceived changes in the policy rules.
Moreover, the given specification of VAR is not understandable. It
should be properly written.
(4) The authors should know that parameters of the reduced form VAR
are not interpretable. In VAR, the impulse response functions (IRF)
along with the variance decompositions demonstrate the dynamic behavior
of empirical models. Moreover, with only 49 observations, estimating 5x5
VAR with 2 lags make the results unreliable due to very low degree of
freedom.
(5) On page 11, the forecasted value of wheat for 2010 is in fact
the predicted value of wheat for 2009. Furthermore, the authors did not
mention what procedure they followed in simulations for wheat production
for 2060.
(6) The authors are wrongly interpreting the impulse response
functions by considering separate shocks for each period. In fact, there
is only one time shock to a variable in each case and then the behavior
is observed over the time through IRFs. Similarly, the forecast-error
variance decomposition should also be re-interpreted.
(7) The authors justify the positive effect of temperature on wheat
production by saying that higher temperature makes more water available
through glacier melting, which ultimately have positive effect on wheat
production. However, the effect of water availability has already been
captured by "water availability" variable in the model. This
may be the result of C[O.sub.2] emissions; therefore the authors should
include C[O.sub.2] in the analysis.
Muhammad Nasir
Pakistan Institute of Development Economics, Islamabad.
(1) PPM means parts per million. It is used to measure the level of
pollution in air. It is a ratio between pollutant components and the
solution.
(2) For international efforts to abate GHGs see Appendix-1.
(3) The sum of evaporation and plant transpiration from the surface
of the earth to the atmosphere.
(4) A process that displaces newly fixed carbon.
(5) Loss of water by plant during exchange of gases.
(6) Most of the area under wheat cultivation lies in the plain
regions of Indus valley having similar climatic conditions.
(7) The models AFRCWHEAT2, CERES-Wheat, N-WHEAT, SIRIUS-WHEAT, and
SOILN-wheat were designed for Rothamsted, UK and Sevelle, Spain.
(8) There might be certain indirect effect of wheat production on
climate; however, our analysis is limited to the impact of climate
change on wheat production.
(9) PC application Eviews5 has been used for the purpose of
estimation.
(10) VAR model estimation results to other variables, namely
agricultural credit (Ac), fertilisers offtake (Fr), technology (Te) and
wheat procurement price (Wpp), are given in Appendix-2.
(11) Keeping in view the basic objective of the study, we are only
representing the wheat impulse responses.
Pervez Zamurrad Janjua <
[email protected]> is
Foreign Professor at International Institute of Islamic Economics,
International Islamic University (IIUI), Islamabad. Ghulam Samad
<
[email protected]> is Research Economist at Pakistan
Institute of Development Economics, Islamabad. Nazakat Ullah Khan
<nazakatkhan
[email protected]> is Student of MPhil Economics and
Finance at International Institute of Islamic Economics, International
Islamic University (IIUI), Islamabad.
Table 1
Results of the Unit Root Test Statistics
Variables Level First Difference Conclusion
Wheat 4.21966 -7.875017 I(1)
C02 4.325126 -4.922875 I(1)
Temp 1.701159 -12.00938 I(1)
Precip -0.435624 -13.86419 I(1)
Water 3.803203 -9.966595 I(1)
Area 1.760045 -11.79492 I(1)
Table 2
Johansen's Test for the Number of Cointegration Relationship
No. of
CE(s) Trace 5% CV Max-Eigen 5% CV
CE(s) Statistics Statistics
None 79.46599 95.75366 29.9226 40.07757
At most 1 49.54339 69.81889 21.03386 33.87687
At most 2 28.50953 47.85613 17.70915 27.58434
At most 3 10.80038 29.79707 6.655616 21.13162
At most 4 4.14476 15.49471 3.158354 14.2646
At most 5 0.986407 3.841466 0.986407 3.841466
Table 3
Estimation through VAR Model
Vector Autoregression Estimates
Sample (Adjusted): 1961 2009
Included Observations: 49 after Adjustments
Standard errors in ( ) and t-statistics in [ ]
Area C02 Precip
Area(-1) 0.124842 -0.52507 0.004539
-0.17774 -0.42893 -0.00326
[ 0.70239] [-1.22413] [ 1.392431
C02(-1) -0.038178 0.823331 -0.000274
-0.02392 -0.05773 -0.00044
[-1.59586] [ 14.2610] [-0.62529]
Precip(1) 14.38281 -81.90536 0.16735
-8.89935 -21.4766 -0.16323
[ 1.61616] [-3.81370] [ 1.025221
Temp(1) 40.76017 75.97065 -0.62428
-47.1042 -113.675 -0.86399
[ 0.86532] [ 0.66831] [-0.72256]
Water(1) 10.96782 98.01159 0.164828
-12.3892 -29.8987 -0.22724
[ 0.885271 [ 3.27812] [ 0.725341
Wheat(1) 0.181938 0.02629 -0.000935
-0.07976 -0.19249 -0.00146
[ 2.281031 [ 0.13658] [-0.63915]
C 2193.293 -1654.546 8.441518
-963.863 -2326.07 -17.6792
[ 2.275521 [-0.711311 [ 0.47748]
R-squared 0.900537 0.994282 0.187826
Adj. R-squared 0.886327 0.993465 0.071801
Sum sq. Resides 7034773 40969940 2366.709
S.E. Equation 409.261 987.6613 7.506678
F-statistic 63.37758 1217.136 1.618842
Log Likelihood -360.4546 -403.6229 -164.5252
Akaike AIC 14.99815 16.76012 7.001027
Schwarz SC 15.26841 17.03038 7.271287
Mean Dependent 7049.531 16314.98 35.9642
S.D. Dependent 1213.871 12217.37 7.791611
Temp Water Wheat
Area(-1) -0.001234 0.004142 0.028147
-0.00043 -0.00128 -0.41724
[-2.88007] [ 3.24645] [ 0.06746]
C02(-1) -0.000108 5.52E-05 0.131691
-5.80E-05 -0.00017 -0.05616
[-1.875571 [ 0.32148] [ 2.34497]
Precip(1) -0.002084 0.007075 16.29369
-0.02145 -0.06389 -20.891
[-0.097141 [ 0.11074] [ 0.77994]
Temp(1) 0.61034 0.132138 265.6333
-0.11353 -0.33817 -110.576
[ 5.37595] [ 0.39075] [ 2.40227]
Water(1) -0.003554 0.661926 95.77185
-0.02986 -0.08894 -29.0834
[-0.11903] [ 7.44210] [ 3.29301]
Wheat(1) 0.000643 0.000564 0.186449
-0.00019 -0.00057 -0.18724
[ 3.34487] [ 0.98579] [ 0.99579]
C 10.23913 -3.072556 -7210.404
-2.32312 -6.91966 -2262.64
[ 4.40749] [-0.44403] [-3.18672]
R-squared 0.893184 0.989251 0.976617
Adj. R-squared 0.877924 0.987716 0.973277
Sum sq. Resides 40.86617 362.5677 38766060
S.E. Equation 0.98641 2.938123 960.7296
F-statistic 58.53312 644.2508 292.3638
Log Likelihood -65.0808 -118.5621 -402.2683
Akaike AIC 2.942074 5.124982 16.70483
Schwarz SC 3.212334 5.395242 16.97509
Mean Dependent 18.41485 103.8781 12514.45
S.D. Dependent 2.823207 26.50935 5877.001
Table 4
Cholesky Impulse Response Function
Period Area C02 Precip Temp Water
1 547.6505 128.5776 89.04947 25.52728 13.30635
-125.604 -112.014 -110.895 -110.499 -110.461
2 199.3847 120.2491 251.5133 187.6724 260.7115
-149.547 -81.2038 -153.907 -111.358 -84.2251
3 273.3583 98.95197 101.1266 151.1796 262.7725
-106.539 -73.5843 -110.064 -110.598 -68.4551
4 272.8148 94.79574 109.7557 156.5153 266.374
-106.043 -80.4612 -111.075 -121.652 -68.4594
5 275.5361 91.83941 116.4325 161.4013 270.72
-111.915 -87.6574 -119.489 -129.8 -72.1443
6 279.7032 89.408 121.5303 164.8469 273.917
-117.516 -94.6738 -128.411 -136.443 -75.7086
7 283.4604 87.45754 126.5841 167.8656 276.8978
-122.933 -101.391 -137.444 -141.63 -79.0905
Cholesky Ordering: Area C02 Precip Temp Water Wheat.