Experiments with new raster elements.
Ziljak Vujic, Jana ; Plehati, Silvio ; Kropar Vancina, Vesna 等
Abstract: In this work new unpublished raster elements (RE) are
tested in security and individualized printing. The results of earlier
researches dealing with graphic technology and design are published at
the conferences. Results obtained by measuring outline of RE, with
defined coverness area and coverness area after digital printing are
given in this work. For new RE, as well as for earlier published RE no
discussions and/or researches of these parameters are still not done.
Measuring procedure and valorization of regular behavior or change of RE
shape in the whole area of coverness are suggested. This procedure
should be used whenever new RE is introduced in praxis.
Keywords: new raster element (RE), new procedure of measuring and
validation of RE
1. RASTER ELEMENT "MUTANT M68"
Complex mutant in this work is given according to relation as
follows:
[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]
ContourPlot[1-z,{x,-1,1},{y,-1,1},Contours[right arrow]8]; z=Abs[
Sin [ Abs[(0.25^(x^2)-y^2) ]] ]/1.5
[FIGURE 1 OMITTED]
It is difficult to prepare PostScript code from the figure of
two-dimensional shape. It is necessary to add relation with angle
arrangement and divider of the whole equation. It is even more difficult
to find out relation with three-dimensional shape. The only way to find
out errors in definition of RE is to use 2D and 3D analysis. It is not
possible to find dislocation of definition from space -1,1 in all three
coordinates by RIPing but it can be done by 2D and 3D views. Such views
ensure reproduction realization by digital printing or CTP processes.
Even checked PostScript units do not give evidences about errors during
process of screening (Ziljak & Pap, 1999).
Authors suggest to keep uncompleted values of coordinate z while
trying to find new RE. Even the smallest penetration of this coordinate
over values -1 and 1 can cause stopping/disconnection in digital
screening. When new REs are requested it is suggested to provide
parallel tests of relations in 2D, 3D and PostScript technique.
Plot3D [z,{x,-1,1},{y,-1,1},PlotRange[right arrow]{0,1}]
[FIGURE 2 OMITTED]
Research of new RE include experiments with coverness of color reproduction with RE in continuous gray levels in low and higher
frequencies (Ziljak et al, 2003). In this work the quality determination
method is established and it has to be used practically always during
creation of new RE shapes which have never been used in printing praxis
before. Researches are related to regular coverness, changes of raster
angles and results obtained at various frequencies. The same research is
enlarged to cover digital printing because these techniques are
expanding now (Ziljak Vujiae et al., 2006).
In the figure 3 structure of new RE M68 with 50% coverness after
RIPing with sharp edges is given. Printing plate and process of printing
have added some enlargement of RE at the edges which is for the same
example presented in figure 4. For realization PostScript graphic
language was used (Ziljak & Pap, 1999; 2003). Converting of earlier
relation gives following shape:
/r68 {dup mul exch 2 exp 0.25 exch exp exch sub 2 div abs 90 mul
sin abs 3 div } bind def
[FIGURE 3 OMITTED]
2. PRINT WITH MUTANT RASTER ELEMENT
Prints with s 900 dpi, 1200 dpi and 1800 dpi were scaned with the
same number which was used for bitmap screening of figures to determine
coverness of prints. By this technique it is possible to research dot
gain in RE neighbourdhood, because it is possible to read brightness
values for each scaned pixel. If all brightness values of scaned pixels
in researched area are added together and obtained value is divided by
the number of researched pixels mean value of brightness for researched
area is obtained. Digital print of Mutant RE - r68 (M68) with 20 dpi
printed by "Xeikon 32" is presented in figure 4 in two
enlargements. Upper part of print covers wider space and bottom parth
represents space of one raster cell. Table 1. presents parts of
brightness (and darkness) for individual pixels after scanning.
[FIGURE 4 OMITTED]
Values of density for some edge-parts of RE in table 1 are given in
10 steps and separated for coverness of 100% and coverness of 0%. There
are differences in overall coverness between faze of RIPing before
printing plate is made and after printing. Results of these measurements
are given for M68 in Table 1. The first column in table 1 represents
marks for L 20 lpi where this test was done and defined covernesses of
10, 30, 50, 70 i 90% (abbr Xla20 10). The second column represents
number of scanned elements of prints which have entered calculation of
density and coverness.
A lot of pixels (more than half of million) were included in
research of space and resolution of scanning. Intern structure of every
raster element in raster cell was researched when every raster element
was divided in hundreds of parts. In the frame of dot gain research it
was possible to analyze all gray areas around RE for new mutant shapes,
especially for complex crystal and lace raster.
White area was changed with gray area. At high coverness white area
disappears and black area is drastically smaller. Color/ink dispersion
from the center of defined agglomeration is bigger for the bigger
defined coverness. Gray areas gradually and completely close white
space.
[FIGURE 5 OMITTED]
In table 2 coverness of mutant M68 before printing is given (RIP
B/W), as well as after digital printing where in calculation are
included all parts of gray areas in the neighborhood of RE and in the
space of raster cell.
For mutant M68 deviations at 20 lpi are very small. The figure is
defined to the minimal zero deviation after print scanning.
3. CONCLUSION
Introducing of new forms of screening will be used in security
printing. Suggested mutant with changeable structure is not safe enough
because it has two sub-shapes smaller and bigger central structure. It
can be used for documents and design of posters and ambalage. In the
frame of this work 2D and 3D shapes are given, behavior of raster in
continuous spreading, as well as in areas with disconnections of pixels
in various degrees of density. The behavior is the same as it is when
conventional raster shapes are used.
4. LITERATURE
Ziljak, V., Pap K. (1999). Mathematical model of stochastic curves
in digital printing, 26th International Research Conference IARIGAI,
Munchen
Ziljak-Vujiae J., Pap, K., Ziljak, I. (2006). Modeling of screening
elements in stochastic multi-color reproduction, 33rd International
Research Conference IARIGAI, Leipzig
Ziljak, J., Vaneina, V., Agiae, D., Ziljak, I., Pap, K. (2003). New
screening elements in multi-colour printing for special purposes, 30th
International Research Conference IARIGAI, Dubrovnik - Croatia
Ziljak, V., Pap, K., PostScript, (1999, 2003). FS, ISBN 953-199-00-X, UDK: 681.3.06;655.26, Zagreb
ZILJAK VUJIC, J[ana]; PLEHATI, S[ilvio] * & KROPAR VANCINA,
V[esna] *
Table 1. Relative participation in darkness--percents
of total number of pixels in percents of darkness
Data Pixels Black % White% 1-10 10-20
XLa20 10 518400 3.080 83.563 1,8245 1,382
XLa20 30 518400 22.366 56.510 2,1956 1,663
XLa20 50 518400 33.508 27.533 2,9971 2,536
XLa20 70 518400 47.459 0.345 5,1105 4,012
XLa20 90 518400 73.483 0 5,6105 4,792
Data 20-30 30-40 40-50 50-60 60-70
XLa20 10 1,084 0,9898 0,899 0,8729 1,026
XLa20 30 1,452 1,4583 1,466 1,5945 1,881
XLa20 50 2,360 2,5068 2,451 2,6298 2,999
XLa20 70 3,611 3,7292 3,498 3,7546 4,523
XLa20 90 4,496 4,5934 3,680 2,4115 0,813
Data 70-80 80-90 90-99
XLa20 10 1,2986 1,565 2,407
XLa20 30 2,4481 3,248 5,715
XLa20 50 3,9921 5,498 10,987
XLa20 70 6,3499 9,706 7,906
XLa20 90 0,1163 0,001 0,000
Table 2. Coverness of RIPing and coverness of prints
data %
defined coverness
coverness of print gray edges deviation
L20 10 10 97,107 -0.2893
L20 30 30 296,882 -0.3118
L20 50 50 479,417 -2.3118
L20 70 70 696,083 -0.3917
L20 90 90 927,116 2.7116
data
defined %
coverness coverness RIPing
L20 10 103,840 0.3840
L20 30 300,290 0.0290
L20 50 499,269 -0.0731
L20 70 699,331 -0.0669
L20 90 901,436 0.1436