Experimental researches regarding cutting width in laser machining of glass reinforced composite polymeric materials.
Visan, Aurelian ; Ionescu, Nicolae ; Doicin, Cristian 等
1. INTRODUCTION
Composite materials laser beam cutting processing has become
nowadays one of the main industrial and research application (Iliescu et
al., 2007). That is because of the characteristics of this processing
such as: wide availability, a proper stability, the lack of processing
forces. The applicability of the processing is though limited due to the
insufficient knowledge of the main characteristic that causes both the
machining accuracy (the width of the cut respectively) and its
dependence of the process factors.
In order to solve the problem, one should establish the cutting
width and its dependence on electrotechnological parameters.
The authors' new proposed and designed solution consists on
the experimental modelling of the process, on finding out of "the
out width cutting" process function determination and on its
dependence of the main electrotechnological parameters such as: the
laser beam power, the material pattern/nature--by experimenting three
materials and their thickness.
The authors' results lead to the future development of the
research by elaborating a mathematical model to optimise the process
parameters such as defining the goal function and the restrictive
functions, among which the "width of the cut" to represent one
of the restrictions of the model.
2. METHODOLOGY AND MEANS OF RESEARCH
Process functions and the variables. In the instance of laser
cutting we appreciate that the independent global variables are,
basically speaking the processed material and the work regime. For the
specific case of the laser cutting of the polymeric composite materials,
a series of parameters connected to the material are particularly
important, like the thickness of the material, the nature of the
material of the basic matrix, the type of fibbers, the arrangement of
fibbers, the fibber glass concentration, etc.
The material pattern was taken into consideration by designing
three representative composite polymeric materials based on the base
material polyesteric resin and armed with fibber glass, for which names
have been chosen depending on the shape, the dimensions and the fibber
arrangement, as follows: STRATIMAT, symbolised in the paper as ST, for
which the fibbers are long, and arranged in layers (Figure 1a), FIBRA
TOCATA, symbolised FT, for which the glass fibbers are shorter than 10
mm and randomly arranged (Figure 1b) and TESATURA, symbolized TS, for
which the glass fibbers are long and resemble a woven cloth, arranged in
several layers (Figure 1c).
[FIGURE 1 OMITTED]
The main characteristics of the glass fibbers are: Fibber
diameter--13[micro]m, Density--2,54 g/cm, Hardness--6,5 MOHS and Tensile breaking strength--1,47 GPa. The fibber glass contents are 25-30% for
FT, 30-35% for ST and 35-40% for TS (Amza, 2007). The base matrix is an
orthoftaltic polyesteric resin averagely reactive (Hadar, 2002).
Work regime, based on the preliminary research we established the
following parameters: the power of the laser [P.sub.L] (W), the
thickness of the material g (mm) and the cutting speed v (m/min). The
pressure of the processing gas--nitrogen, was mentained at the constant
value of 6 bar.
This paper presents the research on "The out width
cutting" process function for those three materials under research
(namely Yi = Lei = Lei (PL, v, g) [jim]) under a general form (Gheorghe
et all. 1985):
[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1)
We established, for those three materials, i = FT, ST and TS, the
absolute process indexes [I.sub.aFT], considered of reference,
[I.sub.aST] and [I.sub.aTS], that will be calculated for the central
values of the independent variables, respectively PL = 1330 W, v = 2,6
m/min and g = 3,5 mm. Also, we established the relative process indexes
[I.sub.rFT] = [I.sub.aFT]/[I.sub.aFT] = 1 [I.sub.rST] =
[I.sub.aST]/[I.sub.aFT] and [I.sub.rTS] = [I.sub.aTS]/[I.sub.aFT].
Means of inspection and the measuring process. The out
width cutting have been measured in the Laboratory for Quantity
Analysis at the POLITEHNICA University of Bucharest, using a
computerised image analysis line. For each cut, the out width cutting
were measured in 5 points, the first one 20 mm from the edge of the
material, the distance between each two points also being 20 mm. Each
number obtained as a result of the measuring is certified through an
analysis report (Figure 2).
[FIGURE 2 OMITTED]
3. EXPERIMENTAL RESULTS
The following process functions was determinated after conducting
the experiments (Popescu, 2004) and mathematically processing the data:
[L.sub.eST] = [e.sup.5,519] x [P.sup.0,151.sub.L] x [v.sup.-0,324]
x [g.sup.-0,345] (2)
[L.sub.eFT] = [e.sup.5,225] x [P.sup.0,122.sub.L] x [v.sup.-0.129]
x [g.sup.-0,051] (3)
[L.sub.eTS] = [e.sup.4,298] x [P.sup.0,218.sub.L] x [v.sup.-0.090]
x [g.sup.-0,058] (4)
Absolute dimensional precision indicators have been determined
based on (2), (3), (4) functions [I.sub.aSTmed] = 351,898;
[I.sub.aFTmed] = 370,697 and [I.sub.aTSmed] = 301,088 and relative
dimensional precision indicators: [I.sub.rSTmed] = 0,949; [I.sub.rFTmed]
= 1,000 and [I.sub.rTSmed] = 0,812.
4. THE INFLUENCE OF PARAMETERS OF WORK REGIME ON OUT WIDTH CUTTING
The influence of power on the out width cutting. For all three
materials being studied, we find a considerable increase of the out
width cutting when the power increases, as we can see in figure 3
realised for ST material.
[FIGURE 3 OMITTED]
We notice that the average out width cutting has the lowest values
for the TS material, followed in order by the ST and FT. We consider
that the lower values of the out width cutting for the TS and ST can be
accounted for by the denser structure of these materials that causes, on
one hand, the laser beam to be reflected, leading to a further increase
of the in width cutting, and on the other hand, because of the
"voids" generated by the deficitary penetration of the matrix
material through the fibber, the laser beam to be dissipated and thus to
penetrate with more difficulty through the thickness of the material.
The influence of the speed on the out width cutting. For all three
materials, ST, FT and TS, we find a considerable decrease of the out
width cutting when the cutting speed increases within the limit 0,5,
..., 5 m/min, as we can see in figure 4 realised for ST material.
[FIGURE 4 OMITTED]
This situation must have undergone the following explanation: when
the speed increases, the time of contact between the laser beam and a
certain area of the material decreases and thus the amount of heat
transferred to the material decreases and implicitly, the mass of
vaporised material decreases.
We notice that the average out width cutting has the highest values
for the materials type FT and ST.
The influence of the thickness on the out width cutting. For all
three materials being studied, we find a considerable decrease of the
out width cutting with the increase of the thickness of the piece as you
can see in number 5 figure, a figure designed for the ST material.
[FIGURE 5 OMITTED]
This can be accounted for by the influence of the thickness and
structure of the material on the degree of dissipation of the laser beam
on the thickness of the material. We find that the average out width
cutting is at its highest for the material ST, for most of the work
regime.
5. CONCLUSIONS
Based on the facts introduced so far, we can draw some very
important conclusions, as follows:
1. The out width cutting Le is directly dependant on the power of
the laser PL and it is indirectly dependant on the cutting speed v and
on the thickness of the processed material g;
2. For the material ST, the strongest influence on the out width
cutting is exercised by the thickness of the material g and for the
other two materials, by the power [P.sub.L].
3. For most of the used work regimes the out width cutting Le has
its lowest values for the material TS, followed by the materials type ST
and FT, so we have the hierarchy [Le.sub.TS] < [Le.sub.ST] <
[Le.sub.FT];
4. With very few exceptions, for regimes characterised by speeds
close to the lower limit, (0,5 m/min), for all three materials being
studied, the value of the in width cutting is higher than that of the
out width cutting.
6. REFERENCES
Amza, G. et al., (2008). Monitoring the Processing Temperature of
Polymeric Matrix Composite Materials, Plastic Materials, No. 1, MPLAAM
45(1)2007, pp. 61-66, ISSN 0025/5289
Gheorghe, M. et al. (1985). Algorithm for regression functions,
Scientific Bulletin of POLITEHNICA University of Bucharest, Series D,
ISSN, 1220-3041, tom XLVI-XLVII, pp. 176-189
Hadar, A. (2002). Stratified Composite structures, Romanian Academy
Publ., ISBN 973-27-0961-8, Bucharest
Iliescu, M.; Spanu P. & Costoiu, S. (2007). Glass Fibres
Reinforced Polimeric Composites--Statistic Models of Surface Roughness,
Plastic Materials, No. 4, MPLAAM 44(4)2007, pp. 365 - 369, ISSN
0025/5289
Popescu, D. (2004). Contributions in determination of technological
characteristics of laser beam machining, PhD Thesis, POLITEHNICA
University of Bucharest