首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:State of the Art: Signature Biometrics Verification
  • 本地全文:下载
  • 作者:Mohamed Soltane ; Noureddine Doghmane ; Nourddine Guersi
  • 期刊名称:Brain. Broad Research in Artificial Intelligence and Neuroscience
  • 印刷版ISSN:2067-3957
  • 出版年度:2010
  • 卷号:1
  • 期号:2
  • 页码:133-142
  • 语种:English
  • 出版社:EduSoft publishing
  • 摘要:This paper presents a comparative analysis of the performance of three estimation algorithms: Expectation Maximization (EM), Greedy EM Algorithm (GEM) and Figueiredo-Jain Algorithm (FJ) - based on the Gaussian mixture models (GMMs) for signature biometrics verification. The simulation results have shown significant performance achievements. The test performance of EER=5.49 % for "EM", EER=5.04 % for "GEM" and EER=5.00 % for "FJ", shows that the behavioral information scheme of signature biometrics is robust and has a discriminating power, which can be explored for identity authentication.
  • 关键词:Biometric authentication, behavioral, signature, soft decision and Gaussian Mixture Modal, EM, GEM and FJ
国家哲学社会科学文献中心版权所有