首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses
  • 作者:Yang Ou ; Shang-Jui Wang ; Dawei Li
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:44
  • 页码:E6806-E6812
  • DOI:10.1073/pnas.1607152113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N1-acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9–mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.
  • 关键词:SAT1 ; p53 ; polyamine metabolism ; ferroptosis ; tumor suppression
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有