首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Asymptotic Efficiency of the Maximum Likelihood Estimator for the Box-Cox Transformation Model with Heteroscedastic Disturbances
  • 本地全文:下载
  • 作者:Kazumitsu Nawata
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2016
  • 卷号:06
  • 期号:05
  • 页码:835-841
  • DOI:10.4236/ojs.2016.65069
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:This paper considers the asymptotic efficiency of the maximum likelihood estimator (MLE) for the Box-Cox transformation model with heteroscedastic disturbances. The MLE under the normality assumption (BC MLE) is a consistent and asymptotically efficient estimator if the “small ” condition is satisfied and the number of parameters is finite. However, the BC MLE cannot be asymptotically efficient and its rate of convergence is slower than ordinal order when the number of parameters goes to infinity. Anew consistent estimator of order is proposed. One important implication of this study is that estimation methods should be carefully chosen when the model contains many parameters in actual empirical studies.
  • 关键词:Maximum Likelihood Estimator (MLE);Asymptotic Efficiency;Box-Cox Transformation Model;Heteroscedasticity
国家哲学社会科学文献中心版权所有