首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Inference for multivariate mixtures of two unknown symmetric components
  • 作者:Wenxiu Ge ; Xiaobo Guo ; Xueqin Wang
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2014
  • 卷号:7
  • 期号:2
  • 页码:211-217
  • DOI:10.4310/SII.2014.v7.n2.a6
  • 出版社:International Press
  • 摘要:Modeling heterogeneity for multivariate data is an important research topic. In this paper, we give a sufficient condition to establish the identifiability for semiparametric multivariate mixture models with unknown location-shifted symmetric components, and propose a novel minimum distance method to estimate the location and proportion parameters. Strong consistency and asymptotic normality of our estimators under some regularity conditions are established. Simulation studies show that the proposed method is robust to misspecified component distributions. The Old Faithful data is also used as a real benchmark to assess the performance of the proposed method.
  • 关键词:E-distance; identifiability; multivariate symmetry; semiparametric mixtures; V-process
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有