首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Testing the statistical significance of an ultra-high-dimensional naïve Bayes classifier
  • 作者:Baiguo An ; Jianhua Guo ; Hansheng Wang
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2013
  • 卷号:6
  • 期号:2
  • 页码:223-229
  • DOI:10.4310/SII.2013.v6.n2.a6
  • 出版社:International Press
  • 摘要:The naïve Bayes approach is one of the most popular methods used for classification. Nevertheless, how to test its statistical significance under an ultra-high-dimensional (UHD) setup is not well understood. To fill this important theoretical gap, we propose a novel testing statistic with a standard normal asymptotic null distribution, even if the predictor dimension is considerably larger than the sample size. This makes the proposed method useful for UHD data analysis. Simulation studies are presented to demonstrate its finite sample performance and a text classification example is described for illustration.
  • 关键词:binary predictor; hypothesis testing; naïve Bayes; supervised learning; text classification; ultra-high-dimensional data
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有