首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Empirical likelihood based inference for additive partial linear measurement error models
  • 本地全文:下载
  • 作者:Russ Hauser ; Hua Liang ; John D. Meeker
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2009
  • 卷号:2
  • 期号:1
  • 页码:83-90
  • DOI:10.4310/SII.2009.v2.n1.a8
  • 出版社:International Press
  • 摘要:This paper considers statistical inference for additive partial linear models when the linear covariate is measured with error. To improve the accuracy of the normal approximation based confidence intervals, we develop an empirical likelihood based statistic, which is shown to be asymptotically chi-square distributed. We emphasize the finite-sample performance of the proposed method by conducting simulation experiments. The method is used to analyze the relationship between semen quality and phthalate exposure from an environment study.
  • 关键词:backfitting; correction-for-attenuation; coverage probability; error-prone; local linear regression; semiparamatric estimation; undersmoothing
国家哲学社会科学文献中心版权所有