期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2016
卷号:7
期号:8
DOI:10.14569/IJACSA.2016.070846
出版社:Science and Information Society (SAI)
摘要:This paper presents new Speaker Identification and Speaker Verification systems based on the use of new feature vectors extracted from the speech signal. The proposed structure combine between the most successful Mel Frequency Cepstral Coefficients and new features which are the Short Time Zero Crossing Rate of the signal. A comparison between speaker recognition systems based on Gaussian mixture models using the well known Mel Frequency Cepstral Coefficients and the novel systems based on the use of a combination between both reduced Mel Frequency Cepstral Coefficients features vectors and Short Time Zero Crossing Rate features is given. This comparison proves that the use of the new reduced feature vectors help to improve the system’s performance and also help to reduce the time and memory complexity of the system which is required for realistic applications that suffer from computational resource limitation. The experiments were performed on speakers from TIMIT database for different training durations. The suggested systems performances are evaluated against the baseline systems. The increase of the proposed systems performances are well observed for identification experiments and the decrease of Equal Error Rates are also remarkable for verification experiments. Experimental results demonstrate the effectiveness of the new approach which avoids the use of more complex algorithms or the combination of different approaches requiring lengthy calculation.