首页    期刊浏览 2025年01月08日 星期三
登录注册

文章基本信息

  • 标题:Unraveling the essential role of CysK in CDI toxin activation
  • 作者:Parker M. Johnson ; Christina M. Beck ; Robert P. Morse
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:35
  • 页码:9792-9797
  • DOI:10.1073/pnas.1607112113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Contact-dependent growth inhibition (CDI) is a widespread mechanism of bacterial competition. CDI+ bacteria deliver the toxic C-terminal region of contact-dependent inhibition A proteins (CdiA-CT) into neighboring target bacteria and produce CDI immunity proteins (CdiI) to protect against self-inhibition. The CdiA-CTEC536 deployed by uropathogenic Escherichia coli 536 (EC536) is a bacterial toxin 28 (Ntox28) domain that only exhibits ribonuclease activity when bound to the cysteine biosynthetic enzyme O-acetylserine sulfhydrylase A (CysK). Here, we present crystal structures of the CysK/CdiA-CTEC536 binary complex and the neutralized ternary complex of CysK/CdiA-CT/CdiIEC536. CdiA-CTEC536 inserts its C-terminal Gly-Tyr-Gly-Ile peptide tail into the active-site cleft of CysK to anchor the interaction. Remarkably, E. coli serine O-acetyltransferase uses a similar Gly-Asp-Gly-Ile motif to form the “cysteine synthase” complex with CysK. The cysteine synthase complex is found throughout bacteria, protozoa, and plants, indicating that CdiA-CTEC536 exploits a highly conserved protein–protein interaction to promote its toxicity. CysK significantly increases CdiA-CTEC536 thermostability and is required for toxin interaction with tRNA substrates. These observations suggest that CysK stabilizes the toxin fold, thereby organizing the nuclease active site for substrate recognition and catalysis. By contrast, Ntox28 domains from Gram-positive bacteria lack C-terminal Gly-Tyr-Gly-Ile motifs, suggesting that they do not interact with CysK. We show that the Ntox28 domain from Ruminococcus lactaris is significantly more thermostable than CdiA-CTEC536, and its intrinsic tRNA-binding properties support CysK-independent nuclease activity. The striking differences between related Ntox28 domains suggest that CDI toxins may be under evolutionary pressure to maintain low global stability.
  • 关键词:bacterial competition ; structural biology ; toxin chaperone ; tRNase activity
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有