首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Sentiment Based Twitter Spam Detection
  • 本地全文:下载
  • 作者:Nasira Perveen ; Malik M. Saad Missen ; Qaisar Rasool
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2016
  • 卷号:7
  • 期号:7
  • DOI:10.14569/IJACSA.2016.070777
  • 出版社:Science and Information Society (SAI)
  • 摘要:Spams are becoming a serious threat for the users of online social networks especially for the ones like of twitter. twitter’s structural features make it more volatile to spam attacks. In this paper, we propose a spam detection approach for twitter based on sentimental features. We perform our experiments on a data collection of 29K tweets with 1K tweets for 29 trending topics of 2012 on twitter. We evaluate the usefulness of our approach by using five classifiers i.e. BayesNet, Naive Bayes, Random Forest, Support Vector Machine (SVM) and J48. Naive Bayes, Random Forest, J48 and SVM spam detections performance improved with our all proposed features combination. The results demonstrate that proposed features provide better classification accuracy when combined with content and user-oriented features.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; sentiment analysis; spam detection; twitter
国家哲学社会科学文献中心版权所有