期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2016
卷号:7
期号:7
DOI:10.14569/IJACSA.2016.070777
出版社:Science and Information Society (SAI)
摘要:Spams are becoming a serious threat for the users of online social networks especially for the ones like of twitter. twitter’s structural features make it more volatile to spam attacks. In this paper, we propose a spam detection approach for twitter based on sentimental features. We perform our experiments on a data collection of 29K tweets with 1K tweets for 29 trending topics of 2012 on twitter. We evaluate the usefulness of our approach by using five classifiers i.e. BayesNet, Naive Bayes, Random Forest, Support Vector Machine (SVM) and J48. Naive Bayes, Random Forest, J48 and SVM spam detections performance improved with our all proposed features combination. The results demonstrate that proposed features provide better classification accuracy when combined with content and user-oriented features.