首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Neural Net Gains Estimation Based on an Equivalent Model
  • 本地全文:下载
  • 作者:Karen Alicia Aguilar Cruz ; José de Jesús Medel Juárez ; José Luis Fernández Muñoz
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/1690924
  • 出版社:Hindawi Publishing Corporation
  • 摘要:A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix and the proper gain into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system.
国家哲学社会科学文献中心版权所有