期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2002
卷号:XXXIV Part 3 A
页码:42-49
出版社:Copernicus Publications
摘要:In this paper we present a new method for single image orientation using an orthographic drawing or map of the scene. Environments which are dominated by man made objects, such as industrial facilities or urban scenes, are very rich of vertical and horizontal structures. These scene constraints re.ect in symbols in an associated drawing. For example, vertical lines in the scene are usually marked as points in a drawing. The resulting orientation may be used in augmented reality systems or for initiating a subsequent bundle adjustment of all available images. In this paper we propose to use such scene constraints taken from a drawing to estimate the camera orientation. We use observed vertical lines, horizontal lines, and points to estimate the projection matrix P of the image. We describe the constraints in terms of projective geometry which makes them straightforward and very transparent. In contrast to the work of (Bondyfalat et al., 2001), we give a direct solution for P without using the fundamental matrix between image and map as we do not need parallelity constraints between lines in a vertical plane other than for horizontal lines, nor observed perpendicular lines. We present both a direct solution for P and a statistically optimal, iterative solution, which takes the uncertainties of the contraints and the observations in the image and the drawing into account. It is a simplifying modification of the eigenvalue method of (Matei and Meer, 1997). The method allows to evaluate the results statistically, namely to verify the used projection model and the assumed statistical properties of the measured image and map quantities and to validate the achieved accuracy of the estimated projection matrix P. To demonstrate the feasibility of the approach, we present results of the application of our method to both synthetic data and real scenes in industrial environment. Statistical tests show the performance and prove the rigour of the new method
关键词:Orientation from Points and Lines; Industrial Application; Projective Geometry; Maximum Likelihood ; Estimation; 3D Image Map Registration