首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A strategy for mapping and modeling the ecological effects of US lawns
  • 本地全文:下载
  • 作者:C. Milesia ; C. D. Elvidge ; J. B. Dietz
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2005
  • 卷号:XXXVI-8/W27
  • 出版社:Copernicus Publications
  • 摘要:Lawns are ubiquitous in the American urban landscapes. However, little is known about their impact on the carbon and water cycles at the national level. The limited information on the total extent and spatial distribution of these ecosystems and the variability in management practices are the major factors complicating this assessment. In this study, relating turf grass area to fractional impervious surface area, it was estimated that potentially 163,812 km 2 (± 35,850 km 2 ) of land are cultivated with some form of lawn in the continental United States, an area three times larger than that of any irrigated crop. Using the Biome-BGC ecosystem process model, the growth of turf grasses was modelled for 865 sites across the 48 conterminous states under different management scenarios, including either removal or recycling of the grass clippings, different nitrogen fertilization rates and two alternative water irrigation practices. The results indicate that well watered and fertilized turf grasses act as a carbon sink, even assuming removal and bagging of the grass clippings after mowing. The potential soil carbon accumulation that could derive from the total surface under turf (up to 25.7 Tg of C/yr with the simulated scenarios) would require up to 695 to 900 liters of water per person per day, depending on the modeled water irrigation practices, and a cost in carbon emissions due to fertilization and operation of mowing equipment ranging from 15 to 35% of the sequestration
  • 关键词:turf grasses; residential lawns; BIOME-BGC; impervious surface area; carbon sequestration potential; water use
国家哲学社会科学文献中心版权所有