期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2008
卷号:XXXVII Part B3a
页码:7-12
出版社:Copernicus Publications
摘要:In classical photogrammetry, point observations are manually determined by an operator for performing the bundle adjustment of a sequence of images. In such cases, a comparison of different estimates is usually carried out with respect to the estimated 3D object points. Today, a broad range of automatic methods are available for extracting and matching point features across images, even in the case of widely separated views and under strong deformations. This allows for fully automatic solutions to the relative orientation problem, and even to the bundle triangulation in case that manually measured control points are available. However, such systems often contain random subprocedures like RANSAC for eliminating wrong correspondences, yielding different 3D points but hopefully similar orientation parameters. This causes two problems for the evaluation: First, the randomness of the algorithm has an in.uence on its stability, and second, we are constrained to compare the orientation parameters instead of the 3D points. We propose a method for benchmarking automatic bundle adjustments which takes these constraints into account and uses the orientation parameters directly. Given sets of corresponding orientation parameters, we require our benchmark test to address their consistency of the form deviation and the internal precision and their precision level related to the precision of a reference data set. Besides comparing different bundle adjustment methods, the approach may be used to safely evaluate effects of feature operators, matching strategies, control parameters and other design decisions for a particular method. The goal of this paper is to derive appropriate measures to cover these aspects, describe a coherent benchmarking scheme and show the feasibility of the approach using real data