首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Automatic Classification Methods of High-Resolution Satellite Images: the Principal Component Analysis Applied To the Sample Training Set
  • 本地全文:下载
  • 作者:A. Bernardini ; E. S. Malinverni ; P. Zingaretti
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2008
  • 卷号:XXXVII Part B7
  • 页码:701-706
  • 出版社:Copernicus Publications
  • 摘要:In Remote Sensing the various bands of multispectral data have not the same relevance in order to identify pixels inside a specific land cover class. The band algebra combines different images in order to construct a new one that has many advantages from the point of view of image understanding or classification (e.g. pseudobands, resulting from the vegetation indices, are used with success for the classification of vegetated areas). The idea of this project was to define new pseudobands through the Principal Component Analysis (PCA) applied to the training sample set of specific classes. We used high resolution IKONOS Multispectral images to test this methodology. PCA was not applied to the whole image, but only to the pixels belonging to a specific class (training sample set). Eigenvectors have a dimension equal to four, like the number of the original bands (Red, Green, Blue and Near Infrared). We selected the Eigenvectors with the highest relevance for a specific class and applied the correspondent orthogonal linear transformation to the whole image in order to obtain the pseudobands containing the relevant information of the chosen class. The same transformation could be applied to the sample training set to obtain a new sample not influenced by the outlier pixels. Pseudobands were segmented by means of a threshold values based on the histograms of the training set Principal Component. A control sample data set was employed to validate the method by means of the Confusion Matrix. The resulting image can be used as mask for the feature segmentation of the selected class
  • 关键词:Remote Sensing; IKONOS; Classification; Land Cover; Processing; Georeferencing
国家哲学社会科学文献中心版权所有