首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:An empirical technique to improve MRA imaging
  • 作者:Sonia Rauf ; Kalim Qureshi ; Jawad Kazmi
  • 期刊名称:Applied Computing and Informatics
  • 印刷版ISSN:2210-8327
  • 电子版ISSN:2210-8327
  • 出版年度:2016
  • 卷号:12
  • 期号:2
  • 页码:128-133
  • DOI:10.1016/j.aci.2015.06.002
  • 出版社:Elsevier
  • 摘要:In the Region Growing Algorithm (RGA) results of segmentation are totally dependent on the selection of seed point, as an inappropriate seed point may lead to poor segmentation. However, the majority of MRA (Magnetic Resonance Angiography) datasets do not contain required region (vessels) in starting slices. An Enhanced Region Growing Algorithm (ERGA) is proposed for blood vessel segmentation. The ERGA automatically calculates the threshold value on the basis of maximum intensity values of all the slices and selects an appropriate starting slice of the image which has a appropriate seed point. We applied our proposed technique on different patients of MRA datasets of different resolutions and have got improved segmented images with reduction of noise as compared to tradition RGA.
  • 关键词:Image processing ; Segmentation ; Region growing ; Medical imaging ; Vessels ; MRA
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有