首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A survey of data mining and social network analysis based anomaly detection techniques
  • 作者:Ravneet Kaur ; Sarbjeet Singh
  • 期刊名称:Egyptian Informatics Journal
  • 印刷版ISSN:1110-8665
  • 出版年度:2016
  • 卷号:17
  • 期号:2
  • 页码:199-216
  • DOI:10.1016/j.eij.2015.11.004
  • 出版社:Elsevier
  • 摘要:With the increasing trend of online social networks in different domains, social network analysis has recently become the center of research. Online Social Networks (OSNs) have fetched the interest of researchers for their analysis of usage as well as detection of abnormal activities. Anomalous activities in social networks represent unusual and illegal activities exhibiting different behaviors than others present in the same structure. This paper discusses different types of anomalies and their novel categorization based on various characteristics. A review of number of techniques for preventing and detecting anomalies along with underlying assumptions and reasons for the presence of such anomalies is covered in this paper. The paper presents a review of number of data mining approaches used to detect anomalies. A special reference is made to the analysis of social network centric anomaly detection techniques which are broadly classified as behavior based, structure based and spectral based. Each one of this classification further incorporates number of techniques which are discussed in the paper. The paper has been concluded with different future directions and areas of research that could be addressed and worked upon.
  • 关键词:Anomaly detection ; Online social networks ; Social network analysis ; Data mining ; Graph based anomaly detection
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有