摘要:Query optimization is a stimulating task of any database system. A number of heuristics have been applied in recent times, which proposed new algorithms for substantially improving the performance of a query. The hunt for a better solution still continues. The imperishable developments in the field of Decision Support System (DSS) databases are presenting data at an exceptional rate. The massive volume of DSS data is consequential only when it is able to access and analyze by distinctive researchers. Here, an innovative stochastic framework of DSS query optimizer is proposed to further optimize the design of existing query optimization genetic approaches. The results of Entropy Based Restricted Stochastic Query Optimizer (ERSQO) are compared with the results of Exhaustive Enumeration Query Optimizer (EAQO), Simple Genetic Query Optimizer (SGQO), Novel Genetic Query Optimizer (NGQO) and Restricted Stochastic Query Optimizer (RSQO). In terms of Total Costs, EAQO outperforms SGQO, NGQO, RSQO and ERSQO. However, stochastic approaches dominate in terms of runtime. The Total Costs produced by ERSQO is better than SGQO, NGQO and RGQO by 12%, 8% and 5% respectively. Moreover, the effect of replicating data on the Total Costs of DSS query is also examined. In addition, the statistical analysis revealed a 2-tailed significant correlation between the number of join operations and the Total Costs of distributed DSS query. Finally, in regard to the consistency of stochastic query optimizers, the results of SGQO, NGQO, RSQO and ERSQO are 96.2%, 97.2%, 97.45 and 97.8% consistent respectively.