期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2016
卷号:13
DOI:10.5772/62266
语种:English
出版社:SAGE Publications
摘要:Feature extraction and representation is a key step in scene classification. In this paper, a contour detection-based mid-level features learning method is proposed for scene classification. First, a sketch tokens-based contour detection scheme is proposed to initialize seed blocks for learning mid-level patches and the patches with more contour pixels are selected as seed blocks. The procedure is demonstrated to be helpful for scene classification. Next, the seed blocks are employed to train an exemplar SVM to discover other similar occurrences and an entropy-rank criterion is utilized to mine the discriminative patches. Finally, scene categories are identified by matching the discriminative patches and testing images. Extensive experiments on the MIT Indoor-67 dataset, the 15-scene dataset and the UIUC-sports dataset show that the proposed approach yields better performance than other state-of-the-art counterparts.
关键词:Mid-level Feature; Scene Classification; Sketch Tokens; Contour Detection