首页    期刊浏览 2024年12月06日 星期五
登录注册

文章基本信息

  • 标题:Twitter Sentiment Analysis Using Adaboost Classification
  • 本地全文:下载
  • 作者:Sachin Madhukar Ramteke ; Sachin N. Deshmukh
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2016
  • 卷号:4
  • 期号:4
  • 页码:6444
  • DOI:10.15680/IJIRCCE.2016.0404022
  • 出版社:S&S Publications
  • 摘要:In this paper, we study into the benefits of e xpressive features for recognizing the sentiment of Twitter messages i.e. Tweets. We analyse the effectiveness of existing lexical resources and additionally features that take information about the casual and innovative language used in Twitter. In this paper take a supervised classification approach to the problem, but authority obtaining hashtags into Twitter data for establishment training data
  • 关键词:Twitter; Hash Tag; Sentiment Analysis; Features Selection; Adaboost Classification
国家哲学社会科学文献中心版权所有