首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels
  • 本地全文:下载
  • 作者:Joshua Levitz ; Perrine Royal ; Yannick Comoglio
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:15
  • 页码:4194-4199
  • DOI:10.1073/pnas.1522459113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Twik-related K+ channel 1 (TREK1), TREK2, and Twik-related arachidonic-acid stimulated K+ channel (TRAAK) form the TREK subfamily of two-pore-domain K+ (K2P) channels. Despite sharing up to 78% sequence homology and overlapping expression profiles in the nervous system, these channels show major differences in their regulation by physiological stimuli. For instance, TREK1 is inhibited by external acidification, whereas TREK2 is activated. Here, we investigated the ability of the members of the TREK subfamily to assemble to form functional heteromeric channels with novel properties. Using single-molecule pull-down (SiMPull) from HEK cell lysate and subunit counting in the plasma membrane of living cells, we show that TREK1, TREK2, and TRAAK readily coassemble. TREK1 and TREK2 can each heterodimerize with TRAAK, but do so less efficiently than with each other. We functionally characterized the heterodimers and found that all combinations form outwardly rectifying potassium-selective channels but with variable voltage sensitivity and pH regulation. TREK1-TREK2 heterodimers show low levels of activity at physiological external pH but, unlike their corresponding homodimers, are activated by both acidic and alkaline conditions. Modeling based on recent crystal structures, along with mutational analysis, suggests that each subunit within a TREK1-TREK2 channel is regulated independently via titratable His. Finally, TREK1/TRAAK heterodimers differ in function from TRAAK homodimers in two critical ways: they are activated by both intracellular acidification and alkalinization and are regulated by the enzyme phospholipase D2. Thus, heterodimerization provides a means for diversifying functionality through an expansion of the channel types within the K2P channels.
  • 关键词:potassium channels ; single-molecule fluorescence ; leak current ; combinatorial diversity ; heteromerization
国家哲学社会科学文献中心版权所有