首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:A Mixture-Based Bayesian Model Averaging Method
  • 本地全文:下载
  • 作者:Georges Nguefack-Tsague ; Walter Zucchini
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2016
  • 卷号:06
  • 期号:02
  • 页码:220-228
  • DOI:10.4236/ojs.2016.62019
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator are hard to derive. This paper proposes a mixture of priors and sampling distributions as a basic of a Bayes estimator. The frequentist properties of the new Bayes estimator are automatically derived from Bayesian decision theory. It is shown that if all competing models have the same parametric form, the new Bayes estimator reduces to BMA estimator. The method is applied to the daily exchange rate Euro to US Dollar.
  • 关键词:Mixture;Bayesian Model Selection;Bayesian Model Averaging;Bayesian Theory;Frequentist Performance
国家哲学社会科学文献中心版权所有