首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A Regularized Newton Method with Correction for Unconstrained Convex Optimization
  • 本地全文:下载
  • 作者:Liming Li ; Mei Qin ; Heng Wang
  • 期刊名称:Open Journal of Optimization
  • 印刷版ISSN:2325-7105
  • 电子版ISSN:2325-7091
  • 出版年度:2016
  • 卷号:05
  • 期号:01
  • 页码:44-52
  • DOI:10.4236/ojop.2016.51006
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:In this paper, we present a regularized Newton method (M-RNM) with correction for minimizing a convex function whose Hessian matrices may be singular. At every iteration, not only a RNM step is computed but also two correction steps are computed. We show that if the objective function is LC2, then the method posses globally convergent. Numerical results show that the new algorithm performs very well.
  • 关键词:Regularied Newton Method;Correction Technique;Trust Region Technique;Unconstrained Convex Optimization
国家哲学社会科学文献中心版权所有