首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Identifying Semantic in High-Dimensional Web Data Using Latent Semantic Manifold
  • 本地全文:下载
  • 作者:Ajit Kumar ; Sanjeev Maskara ; I-Jen Chiang
  • 期刊名称:Journal of Data Analysis and Information Processing
  • 印刷版ISSN:2327-7211
  • 电子版ISSN:2327-7203
  • 出版年度:2015
  • 卷号:03
  • 期号:04
  • 页码:136-152
  • DOI:10.4236/jdaip.2015.34014
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Latent Semantic Analysis involves natural language processing techniques for analyzing relationships between a set of documents and the terms they contain, by producing a set of concepts (related to the documents and terms) called semantic topics. These semantic topics assist search engine users by providing leads to the more relevant document. We develope a novel algorithm called Latent Semantic Manifold (LSM) that can identify the semantic topics in the high-dimensional web data. The LSM algorithm is established upon the concepts of topology and probability. Asearch tool is also developed using the LSM algorithm. This search tool is deployed for two years at two sites in Taiwan: 1) Taipei Medical University Library, Taipei, and 2) Biomedical Engineering Laboratory, Institute of Biomedical Engineering, National Taiwan University, Taipei. We evaluate the effectiveness and efficiency of the LSM algorithm by comparing with other contemporary algorithms. The results show that the LSM algorithm outperforms compared with others. This algorithm can be used to enhance the functionality of currently available search engines.
  • 关键词:Latent Semantic Manifold;Conditional Random Field;Hidden Markov Model;Graph-Based Tree-Width Decomposition
国家哲学社会科学文献中心版权所有