首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Discriminant Neighborhood Structure Embedding Using Trace Ratio Criterion for Image Recognition
  • 本地全文:下载
  • 作者:Jing Wang ; Fang Chen ; Quanxue Gao
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2015
  • 卷号:03
  • 期号:11
  • 页码:64-70
  • DOI:10.4236/jcc.2015.311011
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Dimensionality reduction is very important in pattern recognition, machine learning, and image recognition. In this paper, we propose a novel linear dimensionality reduction technique using trace ratio criterion, namely Discriminant Neighbourhood Structure Embedding Using Trace Ratio Criterion (TR-DNSE). TR-DNSE preserves the local intrinsic geometric structure, characterizing properties of similarity and diversity within each class, and enforces the separability between different classes by maximizing the sum of the weighted distances between nearby points from different classes. Experiments on four image databases show the effectiveness of the proposed approach.
  • 关键词:Dimensionality Reduction;Manifold Learning;Variability;Trace Ratio
国家哲学社会科学文献中心版权所有