首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Pedestrian Classification Based on Full-SVM Decision Tree
  • 本地全文:下载
  • 作者:Hongmin Xue ; Zhijing Liu ; Jing Xiong
  • 期刊名称:International Journal of Multimedia and Ubiquitous Engineering
  • 印刷版ISSN:1975-0080
  • 出版年度:2015
  • 卷号:10
  • 期号:5
  • 页码:141-154
  • DOI:10.14257/ijmue.2015.10.5.14
  • 出版社:SERSC
  • 摘要:Visual analysis has potential to be used for recognition, and it is one of the hottest but most difficult subjects in computer vision. In order to identify pedestrian movement in an Intelligent Security Monitoring System, the video activity in the prospect is represented by a series of spatio-temporal interest points. Since human posture has the characteristics of uncertainty and illegibility, the clustering centers of each class are computed by fuzzy clustering techniques. We presented a pedestrian classification method based on improved support vector machines in order to solve non-rigid objects that are difficult to identify in intelligent monitoring systems. The Support Vector Machine technology and the decision tree have combined into one multi-class classifier so as to solve multi-class classification problems. Then a full-SVM (Support Vector Machine) decision tree is constructed based on the conventional decision tree. At last, the method is evaluated on the KTH action dataset and receives a comparatively high correct recognition rate.
  • 关键词:action classification; SVM; Decision Tree; Interest Point
国家哲学社会科学文献中心版权所有