首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:GA-Based Adaptive Window Length Estimation for Highly Accurate Audio Segmentation
  • 本地全文:下载
  • 作者:Myeongsu Kang ; Jong-Myon Kim
  • 期刊名称:International Journal of Multimedia and Ubiquitous Engineering
  • 印刷版ISSN:1975-0080
  • 出版年度:2015
  • 卷号:10
  • 期号:1
  • 页码:429-436
  • DOI:10.14257/ijmue.2015.10.1.39
  • 出版社:SERSC
  • 摘要:Accurate audio segmentation has recently received increasing attention for its applications in automatic indexing, content analysis and information retrieval. Hence, this paper proposes a highly accurate audio segmentation methodology using a genetic algorithm-based approach to adapting and optimizing segmentation window lengths. Specifically, this paper analyzes the parameter sequence of the root-mean-square values of an input audio stream with optimal sliding window (or segmentation window) lengths found and adapted by a genetic algorithm. In addition, this paper determines whether an audio-cut occurs or not by utilizing the parameter sequences as inputs of a support vector machine. Experimental results indicate that the proposed approach achieves 100.00% and 98.69% in the average precision and recall rates of segmentation performance, respectively.
  • 关键词:Audio segmentation; genetic algorithm; support vector machine; parameter ; sequence
国家哲学社会科学文献中心版权所有