首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Identification of asymmetric conditional heteroscedasticity in the presence of outliers
  • 本地全文:下载
  • 作者:M. Angeles Carnero ; Ana Pérez ; Esther Ruiz
  • 期刊名称:SERIEs: Journal of the Spanish Economic Association
  • 印刷版ISSN:1869-4187
  • 电子版ISSN:1869-4195
  • 出版年度:2016
  • 卷号:7
  • 期号:1
  • 页码:179-201
  • DOI:10.1007/s13209-015-0131-4
  • 出版社:Springer Berlin / Heidelberg
  • 摘要:The identification of asymmetric conditional heteroscedasticity is often based on sample cross-correlations between past and squared observations. In this paper we analyse the effects of outliers on these cross-correlations and, consequently, on the identification of asymmetric volatilities. We show that, as expected, one isolated big outlier biases the sample cross-correlations towards zero and hence could hide true leverage effect. Unlike, the presence of two or more big consecutive outliers could lead to detecting spurious asymmetries or asymmetries of the wrong sign. We also address the problem of robust estimation of the cross-correlations by extending some popular robust estimators of pairwise correlations and autocorrelations. Their finite sample resistance against outliers is compared through Monte Carlo experiments. Situations with isolated and patchy outliers of different sizes are examined. It is shown that a modified Ramsay-weighted estimator of the cross-correlations outperforms other estimators in identifying asymmetric conditionally heteroscedastic models. Finally, the results are illustrated with an empirical application.
  • 关键词:Cross; correlations ; Leverage effect ; Robust correlations ; EGARCH
国家哲学社会科学文献中心版权所有