摘要:The genetic diversity of the bacterial community associated with Alexandrium tamarense blooms was studied in blooms of the toxic dinoflagellates in the waters around the Orkney Isles and the Firth of Forth (Scotland). For toxin and molecular analysis of the bacterial communities associated with the toxic bloom, water samples were taken in 1998 and 1999 from A. tamarense blooms. The bacterial community structure, as determined by DGGE (denaturing gradient gel electrophoresis) showed clear differences between all three investigated size fractions (dinoflagellate-associated bacteria, attached bacteria and free-living bacteria), with high diversity within each sample. DNA sequence analysis of the dominant and most frequent DGGE bands revealed the dominance of α Proteobacteria, mainly of the Roseobacter clade, with similarities of 91–99%. Moreover, DGGE bands occurring at the same position in the gel throughout in most samples corroborate the presence of several specific α Proteobacteria of the Roseobacter clade. Overall, 500 bacteria were isolated from the bloom and partly phylogenetically analysed. They were members of two prokaryotic phyla, the Proteobacteria and the Bacteroidetes, related to Proteobacteria of the α and γ subdivisions (Alteromonas, Pseudoalteromonas and Colwellia). All bacteria were tested for the production of sodium channel blocking (SCB) toxins using mouse neuroblastoma assay. No production of SCB toxins was found and high performance liquid chromatography (HPLC) analysis confirmed these results. The content of total paralytic shellfish poisoning (PSP) toxin in the water samples, as measured within the toxic dinoflagellate blooms using HPLC, ranged from 53 to 2191 ng PSP l−1 in 1998 and from 0 to 478 ng PSP l−1 in 1999. Changes in PSP toxin content were not accompanied by changes of DGGE band patterns. We therefore presume that the bacterial groups identified in this study were not exclusively associated with toxic A. tamarense, but were generally associated with the phytoplankton.