首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A NEW OBJECT-BASED FRAMEWORK TO DETECT SHODOWS IN HIGH-RESOLUTION SATELLITE IMAGERY OVER URBAN AREAS
  • 本地全文:下载
  • 作者:N. Tatar ; M. Saadatseresht ; H. Arefi
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2015
  • 卷号:XL-1/W5
  • 页码:713-717
  • DOI:10.5194/isprsarchives-XL-1-W5-713-2015
  • 出版社:Copernicus Publications
  • 摘要:In this paper a new object-based framework to detect shadow areas in high resolution satellite images is proposed. To produce shadow map in pixel level state of the art supervised machine learning algorithms are employed. Automatic ground truth generation based on Otsu thresholding on shadow and non-shadow indices is used to train the classifiers. It is followed by segmenting the image scene and create image objects. To detect shadow objects, a majority voting on pixel-based shadow detection result is designed. GeoEye-1 multi-spectral image over an urban area in Qom city of Iran is used in the experiments. Results shows the superiority of our proposed method over traditional pixel-based, visually and quantitatively
  • 关键词:Shadow Detection; Spectral Index; High resolution satellite imagery; Segmentation; Object-based; Majority Voting
国家哲学社会科学文献中心版权所有