首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:A COMPARISON OF EMPIRICAL AND INTELIGENT METHODS FOR DUST DETECTION USING MODIS SATELLITE DATA
  • 本地全文:下载
  • 作者:M. Shahrisvand ; M. Akhoondzadeh
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2013
  • 卷号:XL-1/W3
  • 页码:371-375
  • DOI:10.5194/isprsarchives-XL-1-W3-371-2013
  • 出版社:Copernicus Publications
  • 摘要:Nowadays, dust storm in one of the most important natural hazards which is considered as a national concern in scientific communities. This paper considers the capabilities of some classical and intelligent methods for dust detection from satellite imagery around the Middle East region. In the study of dust detection, MODIS images have been a good candidate due to their suitable spectral and temporal resolution. In this study, physical-based and intelligent methods including decision tree, ANN (Artificial Neural Network) and SVM (Support Vector Machine) have been applied to detect dust storms. Among the mentioned approaches, in this paper, SVM method has been implemented for the first time in domain of dust detection studies. Finally, AOD (Aerosol Optical Depth) images, which are one the referenced standard products of OMI (Ozone Monitoring Instrument) sensor, have been used to assess the accuracy of all the implemented methods. Since the SVM method can distinguish dust storm over lands and oceans simultaneously, therefore the accuracy of SVM method is achieved better than the other applied approaches. As a conclusion, this paper shows that SVM can be a powerful tool for production of dust images with remarkable accuracy in comparison with AOT (Aerosol Optical Thickness) product of NASA.
  • 关键词:Classification; Dust detection; Decision tree; ANN; SVM; MODIS
国家哲学社会科学文献中心版权所有