期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2010
卷号:XXXVIII - Part 2
页码:173-178
出版社:Copernicus Publications
摘要:Pattern recognition is an important step in map generalization. Pattern recognition in street network is significant for street network generalization. A grid is characterized by a set of mostly parallel lines, which are crossed by a second set of parallel lines with roughly right angle. Inspired by object recognition in image processing, this paper presents an approach to the grid recognition in street network based on graph theory. Firstly, the bridges and isolated points of the network are identified and deleted repeatedly. Secondly, the similar orientation graph is created, in which the vertices represent street segments and the edges represent the similar orientation relation between streets. Thirdly, the candidates are extracted through graph operators such as finding connected component, finding maximal complete sub-graph, join and intersection. Finally, the candidate are evaluated by deleting bridges and isolated lines repeatedly, reorganizing them into stroke models, changing these stroke models into street intersection graphs in which vertices represent strokes and edges represent strokes intersecting each other, and then calculating the clustering coefficient of these graphs. Experimental result shows the proposed approach is valid in detecting the grid pattern in lower degradation situation
关键词:Spatial information Sciences; Cartography; Generalization; Pattern; Networks; Vector