首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A Study of Moment Based Features on Handwritten Digit Recognition
  • 本地全文:下载
  • 作者:Pawan Kumar Singh ; Ram Sarkar ; Mita Nasipuri
  • 期刊名称:Applied Computational Intelligence and Soft Computing
  • 印刷版ISSN:1687-9724
  • 电子版ISSN:1687-9732
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/2796863
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Handwritten digit recognition plays a significant role in many user authentication applications in the modern world. As the handwritten digits are not of the same size, thickness, style, and orientation, therefore, these challenges are to be faced to resolve this problem. A lot of work has been done for various non-Indic scripts particularly, in case of Roman, but, in case of Indic scripts, the research is limited. This paper presents a script invariant handwritten digit recognition system for identifying digits written in five popular scripts of Indian subcontinent, namely, Indo-Arabic, Bangla, Devanagari, Roman, and Telugu. A 130-element feature set which is basically a combination of six different types of moments, namely, geometric moment, moment invariant, affine moment invariant, Legendre moment, Zernike moment, and complex moment, has been estimated for each digit sample. Finally, the technique is evaluated on CMATER and MNIST databases using multiple classifiers and, after performing statistical significance tests, it is observed that Multilayer Perceptron (MLP) classifier outperforms the others. Satisfactory recognition accuracies are attained for all the five mentioned scripts.
国家哲学社会科学文献中心版权所有