期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2016
卷号:7
期号:1
DOI:10.14569/IJACSA.2016.070133
出版社:Science and Information Society (SAI)
摘要:Error correcting codes, also known as error controlling codes, are sets of codes with redundancy that provides for error detection and correction, for fault tolerant operations like data transmission over noisy channels or data retention using storage media with possible physical defects. The challenge is to find a set of m codes out of 2n available n-bit combinations, such that the aggregate hamming distance among those codewords and/or the minimum distance is maximized. Due to the prohibitively large solution spaces of practically sized problems, greedy algorithms are used to generate quick and dirty solutions. However, modern evolutionary search techniques like genetic algorithms, swarm particles, gravitational search, and others, offer more feasible solutions, yielding near optimal solutions in exchange for some computational time. The Chemical Reaction Optimization (CRO), which is inspired by the molecular reactions towards a minimal energy state, emerged recently as an efficient optimization technique. However, like the other techniques, its internal dynamics are hard to control towards convergence, yielding poor performance in many situations. In this research, we proposed an enhanced exploration strategy to overcome this problem, and compared it with the standard threshold based exploration strategy in solving the maximally distant codes allocation problem. Test results showed that the enhancement provided better performance on most metrics.