摘要:Online social networks are a source of sharing information and maintaining personal contacts with other people through social interactions and thus forming virtual communities online. Social networks are crowded with positive and negative relations. Positive relations are formed by support, endorsement and friendship and thus, create a network of well-connected users whereas negative relations are a result of opposition, distrust and avoidance creating disconnected networks. Due to increase in illegal activities such as masquerading, conspiring and creating fake profiles on online social networks, exploring and analyzing these negative activities becomes the need of hour. Usually negative ties are treated in same way as positive ties in many theories such as balance theory and blockmodeling analysis. But the standard concepts of social network analysis do not yield same results in respect of each tie. This paper presents a survey on analyzing negative ties in social networks through various types of network analysis techniques that are used for examining ties such as status, centrality and power measures. Due to the difference in characteristics of flow in positive and negative tie networks some of these measures are not applicable on negative ties. This paper also discusses new methods that have been developed specifically for analyzing negative ties such as negative degree, and h^* measure along with the measures based on mixture of positive and negative ties. The different types of social network analysis approaches have been reviewed and compared to determine the best approach that can appropriately identify the negative ties in online networks. It has been analyzed that only few measures such as Degree and PN centrality are applicable for identifying outsiders in network. For applicability in online networks, the performance of PN measure needs to be verified and further, new measures should be developed based upon negative clique concept.