标题:Formulation Optimization and Evaluation of Probiotic Lactobacillus sporogenes-Loaded Sodium Alginate with Carboxymethyl Cellulose Mucoadhesive Beads Using Design Expert Software
摘要:The present study deals with the formulation optimization of sodium carboxymethyl cellulose-alginate mucoadhesive beads containing probiotic Lactobacillus sporogenes through ionotropic gelation using 32 factorial design. The effect of sodium carboxymethyl cellulose-alginate concentration on the probiotic entrapment efficiency (PEE, %), viability in simulated gastric fluid (log CFU/g), and mucoadhesion over 8 hr (%) was optimized. The optimized beads containing probiotic Lactobacillus sporogenes showed entrapment efficiency of %, viability of probiotic in simulated gastric fluid (log CFU/g) of 9.34, mucoadhesion of %, and mean diameter of mm. The beads were also characterized by SEM, FTIR, and XRD. The swelling and degradation of these beads were influenced by pH of the test medium. Finally, stability tests performed at room temperature (25~28°C) highlighted a bacterial viability of about 91% and 86% after 1 and 2 months, respectively. The advantageous properties of probiotic Lactobacillus sporogenes-loaded mucoadhesive beads make them suitable for incorporation in functional food and/or pharmaceutical products.