期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:4
页码:E413-E419
DOI:10.1073/pnas.1518206113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green’s function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon.